柱状V2O5的纳米约束几何结构决定了电化学离子插入机制、存储位置和扩散途径。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-29 Epub Date: 2025-07-14 DOI:10.1021/acsnano.5c08169
Jameela Karol, Charles O Ogolla, Mohsen Sotoudeh, Manuel Dillenz, Maciej Tobis, Ellen Vollmer, Yoga T Malik, Maider Zarrabeitia, Axel Groß, Benjamin Butz, Simon Fleischmann
{"title":"柱状V2O5的纳米约束几何结构决定了电化学离子插入机制、存储位置和扩散途径。","authors":"Jameela Karol, Charles O Ogolla, Mohsen Sotoudeh, Manuel Dillenz, Maciej Tobis, Ellen Vollmer, Yoga T Malik, Maider Zarrabeitia, Axel Groß, Benjamin Butz, Simon Fleischmann","doi":"10.1021/acsnano.5c08169","DOIUrl":null,"url":null,"abstract":"<p><p>Improving the electrochemical ion intercalation capacity and kinetics in layered host materials is a critical challenge to further develop lithium-ion batteries, as well as emerging cell chemistries based on ions beyond lithium. Modification of the nanoconfining interlayer space within host materials by synthetic pillaring approaches has emerged as a promising strategy; however, the resulting structural properties of host materials, host-pillar interactions as well as associated electrochemical mechanisms remain poorly understood. Herein, we systematically study a series of bilayered V<sub>2</sub>O<sub>5</sub> host materials pillared with alkyldiamines of different lengths, resulting in tunable nanoconfinement geometries with interlayer spacings in the range of 1.0-1.9 nm. The electrochemical Li<sup>+</sup> intercalation capacity is increased from approximately 1.0 to 1.5 Li<sup>+</sup> per V<sub>2</sub>O<sub>5</sub> in expanded host materials due to the stabilization of new storage sites. The intercalation kinetics improve with expansion due to a transition in Li<sup>+</sup> diffusion pathways from 1D to 2D diffusional networks. Operando X-ray diffraction reveals a transition of the intercalation mechanism from solid-solution Li<sup>+</sup> intercalation in V<sub>2</sub>O<sub>5</sub> hosts with small and medium interlayer spacings to solvent cointercalation in V<sub>2</sub>O<sub>5</sub> with the largest interlayer spacing. The work systematically demonstrates the impact of nanoconfinement geometry within bilayered V<sub>2</sub>O<sub>5</sub> on the resulting Li<sup>+</sup> intercalation metrics and mechanisms, providing insights into both the microstructure and associated electrochemistry of pillared materials.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":" ","pages":"26904-26919"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanoconfinement Geometry of Pillared V<sub>2</sub>O<sub>5</sub> Determines Electrochemical Ion Intercalation Mechanisms, Storage Sites, and Diffusion Pathways.\",\"authors\":\"Jameela Karol, Charles O Ogolla, Mohsen Sotoudeh, Manuel Dillenz, Maciej Tobis, Ellen Vollmer, Yoga T Malik, Maider Zarrabeitia, Axel Groß, Benjamin Butz, Simon Fleischmann\",\"doi\":\"10.1021/acsnano.5c08169\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Improving the electrochemical ion intercalation capacity and kinetics in layered host materials is a critical challenge to further develop lithium-ion batteries, as well as emerging cell chemistries based on ions beyond lithium. Modification of the nanoconfining interlayer space within host materials by synthetic pillaring approaches has emerged as a promising strategy; however, the resulting structural properties of host materials, host-pillar interactions as well as associated electrochemical mechanisms remain poorly understood. Herein, we systematically study a series of bilayered V<sub>2</sub>O<sub>5</sub> host materials pillared with alkyldiamines of different lengths, resulting in tunable nanoconfinement geometries with interlayer spacings in the range of 1.0-1.9 nm. The electrochemical Li<sup>+</sup> intercalation capacity is increased from approximately 1.0 to 1.5 Li<sup>+</sup> per V<sub>2</sub>O<sub>5</sub> in expanded host materials due to the stabilization of new storage sites. The intercalation kinetics improve with expansion due to a transition in Li<sup>+</sup> diffusion pathways from 1D to 2D diffusional networks. Operando X-ray diffraction reveals a transition of the intercalation mechanism from solid-solution Li<sup>+</sup> intercalation in V<sub>2</sub>O<sub>5</sub> hosts with small and medium interlayer spacings to solvent cointercalation in V<sub>2</sub>O<sub>5</sub> with the largest interlayer spacing. The work systematically demonstrates the impact of nanoconfinement geometry within bilayered V<sub>2</sub>O<sub>5</sub> on the resulting Li<sup>+</sup> intercalation metrics and mechanisms, providing insights into both the microstructure and associated electrochemistry of pillared materials.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\" \",\"pages\":\"26904-26919\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-07-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsnano.5c08169\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsnano.5c08169","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

提高层状主体材料的电化学离子插入能力和动力学是进一步发展锂离子电池以及基于锂以外离子的新兴电池化学的关键挑战。利用合成柱化方法修饰宿主材料内的纳米层间空间是一种很有前途的策略;然而,宿主材料的结构特性、主柱相互作用以及相关的电化学机制仍然知之甚少。本文中,我们系统地研究了一系列以不同长度的烷基二胺为支柱的双层V2O5主体材料,从而得到了层间间距在1.0-1.9 nm范围内可调的纳米约束几何形状。由于新的存储位点的稳定,在膨胀的主体材料中,电化学Li+插入容量从每V2O5大约1.0增加到1.5 Li+。由于Li+扩散途径从一维扩散网络向二维扩散网络的转变,嵌入动力学随着扩展而改善。Operando x射线衍射揭示了Li+在V2O5中中、小层间距的固溶插层机制向V2O5中最大层间距的溶剂共插层机制的转变。这项工作系统地展示了双层V2O5中纳米约束几何对Li+嵌入指标和机制的影响,为柱状材料的微观结构和相关电化学提供了见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Nanoconfinement Geometry of Pillared V2O5 Determines Electrochemical Ion Intercalation Mechanisms, Storage Sites, and Diffusion Pathways.

Improving the electrochemical ion intercalation capacity and kinetics in layered host materials is a critical challenge to further develop lithium-ion batteries, as well as emerging cell chemistries based on ions beyond lithium. Modification of the nanoconfining interlayer space within host materials by synthetic pillaring approaches has emerged as a promising strategy; however, the resulting structural properties of host materials, host-pillar interactions as well as associated electrochemical mechanisms remain poorly understood. Herein, we systematically study a series of bilayered V2O5 host materials pillared with alkyldiamines of different lengths, resulting in tunable nanoconfinement geometries with interlayer spacings in the range of 1.0-1.9 nm. The electrochemical Li+ intercalation capacity is increased from approximately 1.0 to 1.5 Li+ per V2O5 in expanded host materials due to the stabilization of new storage sites. The intercalation kinetics improve with expansion due to a transition in Li+ diffusion pathways from 1D to 2D diffusional networks. Operando X-ray diffraction reveals a transition of the intercalation mechanism from solid-solution Li+ intercalation in V2O5 hosts with small and medium interlayer spacings to solvent cointercalation in V2O5 with the largest interlayer spacing. The work systematically demonstrates the impact of nanoconfinement geometry within bilayered V2O5 on the resulting Li+ intercalation metrics and mechanisms, providing insights into both the microstructure and associated electrochemistry of pillared materials.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信