含氟添加剂对钙电池熔盐电解质的影响

IF 5.1 4区 材料科学 Q2 ELECTROCHEMISTRY
Carolina Cruz, Patrik Johansson
{"title":"含氟添加剂对钙电池熔盐电解质的影响","authors":"Carolina Cruz,&nbsp;Patrik Johansson","doi":"10.1002/batt.202500239","DOIUrl":null,"url":null,"abstract":"<p>Fluorinated additives offer a promising route to tailor the structure and transport properties of electrolytes in general, yet their role in molten salt electrolytes (MSEs) remains poorly understood. Here, the influence of three fluorinated additives, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), 1,2- bis(2,2,2-trifluoroethoxy) ethane (BTFE), and PhF, on the structure and dynamics of an MSE composed of [Li, Na, K, Ca]FSI, is investigated using molecular dynamics simulations—with the end-goal of improved calcium battery (CaB) electrolytes. The differences in additive chemical structure affect cation coordination, ionic cage persistence, and ligand exchange kinetics; while TTE and BTFE directly participate in cation coordination, PhF acts as a non-coordinating diluent, weakening the ionic network through spatial disruption. These additive-specific effects result in cation-dependent trends in coordination and mobility. Overall, the findings provide a proof-of-concept for rational additive selection in MSEs, shifting the design paradigm from optimizing bulk conductivity toward engineering coordination and interfacial behavior for CaB electrolytes.</p>","PeriodicalId":132,"journal":{"name":"Batteries & Supercaps","volume":"8 7","pages":""},"PeriodicalIF":5.1000,"publicationDate":"2025-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202500239","citationCount":"0","resultStr":"{\"title\":\"Effects of Fluorinated Additives in Molten Salt Electrolytes for Calcium Batteries\",\"authors\":\"Carolina Cruz,&nbsp;Patrik Johansson\",\"doi\":\"10.1002/batt.202500239\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Fluorinated additives offer a promising route to tailor the structure and transport properties of electrolytes in general, yet their role in molten salt electrolytes (MSEs) remains poorly understood. Here, the influence of three fluorinated additives, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), 1,2- bis(2,2,2-trifluoroethoxy) ethane (BTFE), and PhF, on the structure and dynamics of an MSE composed of [Li, Na, K, Ca]FSI, is investigated using molecular dynamics simulations—with the end-goal of improved calcium battery (CaB) electrolytes. The differences in additive chemical structure affect cation coordination, ionic cage persistence, and ligand exchange kinetics; while TTE and BTFE directly participate in cation coordination, PhF acts as a non-coordinating diluent, weakening the ionic network through spatial disruption. These additive-specific effects result in cation-dependent trends in coordination and mobility. Overall, the findings provide a proof-of-concept for rational additive selection in MSEs, shifting the design paradigm from optimizing bulk conductivity toward engineering coordination and interfacial behavior for CaB electrolytes.</p>\",\"PeriodicalId\":132,\"journal\":{\"name\":\"Batteries & Supercaps\",\"volume\":\"8 7\",\"pages\":\"\"},\"PeriodicalIF\":5.1000,\"publicationDate\":\"2025-05-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/batt.202500239\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Batteries & Supercaps\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/batt.202500239\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Batteries & Supercaps","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/batt.202500239","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

氟化添加剂为调整电解质的结构和传输特性提供了一条很有前途的途径,但它们在熔盐电解质(mse)中的作用仍然知之甚少。本文通过分子动力学模拟研究了1,1,2,2-四氟乙基-2,2,3,3-四氟丙基醚(TTE)、1,2-二(2,2,2-三氟乙氧基)乙烷(BTFE)和PhF这三种含氟添加剂对由[Li, Na, K, Ca]FSI组成的MSE结构和动力学的影响,最终目的是改进钙电池(CaB)电解质。添加剂化学结构的差异影响阳离子配位、离子笼持久性和配体交换动力学;TTE和BTFE直接参与阳离子配位,而PhF作为非配位稀释剂,通过空间破坏削弱离子网络。这些加性特异性效应导致了阳离子依赖性的协调和迁移趋势。总的来说,这些发现为mse中合理的添加剂选择提供了概念验证,将设计范式从优化整体电导率转向优化CaB电解质的工程协调和界面行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Effects of Fluorinated Additives in Molten Salt Electrolytes for Calcium Batteries

Effects of Fluorinated Additives in Molten Salt Electrolytes for Calcium Batteries

Fluorinated additives offer a promising route to tailor the structure and transport properties of electrolytes in general, yet their role in molten salt electrolytes (MSEs) remains poorly understood. Here, the influence of three fluorinated additives, 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoropropyl ether (TTE), 1,2- bis(2,2,2-trifluoroethoxy) ethane (BTFE), and PhF, on the structure and dynamics of an MSE composed of [Li, Na, K, Ca]FSI, is investigated using molecular dynamics simulations—with the end-goal of improved calcium battery (CaB) electrolytes. The differences in additive chemical structure affect cation coordination, ionic cage persistence, and ligand exchange kinetics; while TTE and BTFE directly participate in cation coordination, PhF acts as a non-coordinating diluent, weakening the ionic network through spatial disruption. These additive-specific effects result in cation-dependent trends in coordination and mobility. Overall, the findings provide a proof-of-concept for rational additive selection in MSEs, shifting the design paradigm from optimizing bulk conductivity toward engineering coordination and interfacial behavior for CaB electrolytes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.60
自引率
5.30%
发文量
223
期刊介绍: Electrochemical energy storage devices play a transformative role in our societies. They have allowed the emergence of portable electronics devices, have triggered the resurgence of electric transportation and constitute key components in smart power grids. Batteries & Supercaps publishes international high-impact experimental and theoretical research on the fundamentals and applications of electrochemical energy storage. We support the scientific community to advance energy efficiency and sustainability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信