Reza Rajabli, Mahdie Soltaninejad, Vladimir S. Fonov, Danilo Bzdok, D. Louis Collins
{"title":"脑年龄预测:深度模型需要一个手来概括","authors":"Reza Rajabli, Mahdie Soltaninejad, Vladimir S. Fonov, Danilo Bzdok, D. Louis Collins","doi":"10.1002/hbm.70254","DOIUrl":null,"url":null,"abstract":"<p>Predicting brain age from T1-weighted MRI is a promising marker for understanding brain aging and its associated conditions. While deep learning models have shown success in reducing the mean absolute error (MAE) of predicted brain age, concerns about robust and accurate generalization in new data limit their clinical applicability. The large number of trainable parameters, combined with limited medical imaging training data, contributes to this challenge, often resulting in a generalization gap where there is a significant discrepancy between model performance on training data versus unseen data. In this study, we assess a deep model, SFCN-reg, based on the VGG-16 architecture, and address the generalization gap through comprehensive preprocessing, extensive data augmentation, and model regularization. Using training data from the UK Biobank, we demonstrate substantial improvements in model performance. Specifically, our approach reduces the generalization MAE by 47% (from 5.25 to 2.79 years) in the Alzheimer's Disease Neuroimaging Initiative dataset and by 12% (from 4.35 to 3.75 years) in the Australian Imaging, Biomarker and Lifestyle dataset. Furthermore, we achieve up to 13% reduction in scan-rescan error (from 0.80 to 0.70 years) while enhancing the model's robustness to registration errors. Feature importance maps highlight anatomical regions used to predict age. These results highlight the critical role of high-quality preprocessing and robust training techniques in improving accuracy and narrowing the generalization gap, both necessary steps toward the clinical use of brain age prediction models. Our study makes valuable contributions to neuroimaging research by offering a potential pathway to improve the clinical applicability of deep learning models.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 11","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70254","citationCount":"0","resultStr":"{\"title\":\"Brain Age Prediction: Deep Models Need a Hand to Generalize\",\"authors\":\"Reza Rajabli, Mahdie Soltaninejad, Vladimir S. Fonov, Danilo Bzdok, D. Louis Collins\",\"doi\":\"10.1002/hbm.70254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predicting brain age from T1-weighted MRI is a promising marker for understanding brain aging and its associated conditions. While deep learning models have shown success in reducing the mean absolute error (MAE) of predicted brain age, concerns about robust and accurate generalization in new data limit their clinical applicability. The large number of trainable parameters, combined with limited medical imaging training data, contributes to this challenge, often resulting in a generalization gap where there is a significant discrepancy between model performance on training data versus unseen data. In this study, we assess a deep model, SFCN-reg, based on the VGG-16 architecture, and address the generalization gap through comprehensive preprocessing, extensive data augmentation, and model regularization. Using training data from the UK Biobank, we demonstrate substantial improvements in model performance. Specifically, our approach reduces the generalization MAE by 47% (from 5.25 to 2.79 years) in the Alzheimer's Disease Neuroimaging Initiative dataset and by 12% (from 4.35 to 3.75 years) in the Australian Imaging, Biomarker and Lifestyle dataset. Furthermore, we achieve up to 13% reduction in scan-rescan error (from 0.80 to 0.70 years) while enhancing the model's robustness to registration errors. Feature importance maps highlight anatomical regions used to predict age. These results highlight the critical role of high-quality preprocessing and robust training techniques in improving accuracy and narrowing the generalization gap, both necessary steps toward the clinical use of brain age prediction models. Our study makes valuable contributions to neuroimaging research by offering a potential pathway to improve the clinical applicability of deep learning models.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 11\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70254\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70254\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70254","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
Brain Age Prediction: Deep Models Need a Hand to Generalize
Predicting brain age from T1-weighted MRI is a promising marker for understanding brain aging and its associated conditions. While deep learning models have shown success in reducing the mean absolute error (MAE) of predicted brain age, concerns about robust and accurate generalization in new data limit their clinical applicability. The large number of trainable parameters, combined with limited medical imaging training data, contributes to this challenge, often resulting in a generalization gap where there is a significant discrepancy between model performance on training data versus unseen data. In this study, we assess a deep model, SFCN-reg, based on the VGG-16 architecture, and address the generalization gap through comprehensive preprocessing, extensive data augmentation, and model regularization. Using training data from the UK Biobank, we demonstrate substantial improvements in model performance. Specifically, our approach reduces the generalization MAE by 47% (from 5.25 to 2.79 years) in the Alzheimer's Disease Neuroimaging Initiative dataset and by 12% (from 4.35 to 3.75 years) in the Australian Imaging, Biomarker and Lifestyle dataset. Furthermore, we achieve up to 13% reduction in scan-rescan error (from 0.80 to 0.70 years) while enhancing the model's robustness to registration errors. Feature importance maps highlight anatomical regions used to predict age. These results highlight the critical role of high-quality preprocessing and robust training techniques in improving accuracy and narrowing the generalization gap, both necessary steps toward the clinical use of brain age prediction models. Our study makes valuable contributions to neuroimaging research by offering a potential pathway to improve the clinical applicability of deep learning models.
期刊介绍:
Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged.
Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.