脑年龄预测:深度模型需要一个手来概括

IF 3.5 2区 医学 Q1 NEUROIMAGING
Reza Rajabli, Mahdie Soltaninejad, Vladimir S. Fonov, Danilo Bzdok, D. Louis Collins
{"title":"脑年龄预测:深度模型需要一个手来概括","authors":"Reza Rajabli,&nbsp;Mahdie Soltaninejad,&nbsp;Vladimir S. Fonov,&nbsp;Danilo Bzdok,&nbsp;D. Louis Collins","doi":"10.1002/hbm.70254","DOIUrl":null,"url":null,"abstract":"<p>Predicting brain age from T1-weighted MRI is a promising marker for understanding brain aging and its associated conditions. While deep learning models have shown success in reducing the mean absolute error (MAE) of predicted brain age, concerns about robust and accurate generalization in new data limit their clinical applicability. The large number of trainable parameters, combined with limited medical imaging training data, contributes to this challenge, often resulting in a generalization gap where there is a significant discrepancy between model performance on training data versus unseen data. In this study, we assess a deep model, SFCN-reg, based on the VGG-16 architecture, and address the generalization gap through comprehensive preprocessing, extensive data augmentation, and model regularization. Using training data from the UK Biobank, we demonstrate substantial improvements in model performance. Specifically, our approach reduces the generalization MAE by 47% (from 5.25 to 2.79 years) in the Alzheimer's Disease Neuroimaging Initiative dataset and by 12% (from 4.35 to 3.75 years) in the Australian Imaging, Biomarker and Lifestyle dataset. Furthermore, we achieve up to 13% reduction in scan-rescan error (from 0.80 to 0.70 years) while enhancing the model's robustness to registration errors. Feature importance maps highlight anatomical regions used to predict age. These results highlight the critical role of high-quality preprocessing and robust training techniques in improving accuracy and narrowing the generalization gap, both necessary steps toward the clinical use of brain age prediction models. Our study makes valuable contributions to neuroimaging research by offering a potential pathway to improve the clinical applicability of deep learning models.</p>","PeriodicalId":13019,"journal":{"name":"Human Brain Mapping","volume":"46 11","pages":""},"PeriodicalIF":3.5000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70254","citationCount":"0","resultStr":"{\"title\":\"Brain Age Prediction: Deep Models Need a Hand to Generalize\",\"authors\":\"Reza Rajabli,&nbsp;Mahdie Soltaninejad,&nbsp;Vladimir S. Fonov,&nbsp;Danilo Bzdok,&nbsp;D. Louis Collins\",\"doi\":\"10.1002/hbm.70254\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Predicting brain age from T1-weighted MRI is a promising marker for understanding brain aging and its associated conditions. While deep learning models have shown success in reducing the mean absolute error (MAE) of predicted brain age, concerns about robust and accurate generalization in new data limit their clinical applicability. The large number of trainable parameters, combined with limited medical imaging training data, contributes to this challenge, often resulting in a generalization gap where there is a significant discrepancy between model performance on training data versus unseen data. In this study, we assess a deep model, SFCN-reg, based on the VGG-16 architecture, and address the generalization gap through comprehensive preprocessing, extensive data augmentation, and model regularization. Using training data from the UK Biobank, we demonstrate substantial improvements in model performance. Specifically, our approach reduces the generalization MAE by 47% (from 5.25 to 2.79 years) in the Alzheimer's Disease Neuroimaging Initiative dataset and by 12% (from 4.35 to 3.75 years) in the Australian Imaging, Biomarker and Lifestyle dataset. Furthermore, we achieve up to 13% reduction in scan-rescan error (from 0.80 to 0.70 years) while enhancing the model's robustness to registration errors. Feature importance maps highlight anatomical regions used to predict age. These results highlight the critical role of high-quality preprocessing and robust training techniques in improving accuracy and narrowing the generalization gap, both necessary steps toward the clinical use of brain age prediction models. Our study makes valuable contributions to neuroimaging research by offering a potential pathway to improve the clinical applicability of deep learning models.</p>\",\"PeriodicalId\":13019,\"journal\":{\"name\":\"Human Brain Mapping\",\"volume\":\"46 11\",\"pages\":\"\"},\"PeriodicalIF\":3.5000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/hbm.70254\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Human Brain Mapping\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70254\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Human Brain Mapping","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/hbm.70254","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

通过t1加权MRI预测脑年龄是了解脑衰老及其相关条件的一个有希望的标记。虽然深度学习模型在降低预测脑年龄的平均绝对误差(MAE)方面取得了成功,但对新数据的鲁棒性和准确泛化的担忧限制了它们的临床适用性。大量的可训练参数,加上有限的医学成像训练数据,造成了这一挑战,往往导致泛化差距,即模型在训练数据上的表现与未见数据之间存在显著差异。在这项研究中,我们评估了一个基于VGG-16架构的深度模型SFCN-reg,并通过全面的预处理、广泛的数据增强和模型正则化来解决泛化差距。使用来自UK Biobank的训练数据,我们展示了模型性能的实质性改进。具体来说,我们的方法将阿尔茨海默病神经成像倡议数据集中的泛化MAE降低了47%(从5.25年降至2.79年),在澳大利亚成像、生物标志物和生活方式数据集中降低了12%(从4.35年降至3.75年)。此外,我们实现了高达13%的扫描扫描误差减少(从0.80到0.70年),同时增强了模型对配准误差的鲁棒性。特征重要性图突出了用于预测年龄的解剖区域。这些结果突出了高质量的预处理和强大的训练技术在提高准确性和缩小泛化差距方面的关键作用,这两个都是脑年龄预测模型临床应用的必要步骤。我们的研究为提高深度学习模型的临床适用性提供了一条潜在的途径,为神经影像学研究做出了宝贵的贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Brain Age Prediction: Deep Models Need a Hand to Generalize

Brain Age Prediction: Deep Models Need a Hand to Generalize

Predicting brain age from T1-weighted MRI is a promising marker for understanding brain aging and its associated conditions. While deep learning models have shown success in reducing the mean absolute error (MAE) of predicted brain age, concerns about robust and accurate generalization in new data limit their clinical applicability. The large number of trainable parameters, combined with limited medical imaging training data, contributes to this challenge, often resulting in a generalization gap where there is a significant discrepancy between model performance on training data versus unseen data. In this study, we assess a deep model, SFCN-reg, based on the VGG-16 architecture, and address the generalization gap through comprehensive preprocessing, extensive data augmentation, and model regularization. Using training data from the UK Biobank, we demonstrate substantial improvements in model performance. Specifically, our approach reduces the generalization MAE by 47% (from 5.25 to 2.79 years) in the Alzheimer's Disease Neuroimaging Initiative dataset and by 12% (from 4.35 to 3.75 years) in the Australian Imaging, Biomarker and Lifestyle dataset. Furthermore, we achieve up to 13% reduction in scan-rescan error (from 0.80 to 0.70 years) while enhancing the model's robustness to registration errors. Feature importance maps highlight anatomical regions used to predict age. These results highlight the critical role of high-quality preprocessing and robust training techniques in improving accuracy and narrowing the generalization gap, both necessary steps toward the clinical use of brain age prediction models. Our study makes valuable contributions to neuroimaging research by offering a potential pathway to improve the clinical applicability of deep learning models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Human Brain Mapping
Human Brain Mapping 医学-核医学
CiteScore
8.30
自引率
6.20%
发文量
401
审稿时长
3-6 weeks
期刊介绍: Human Brain Mapping publishes peer-reviewed basic, clinical, technical, and theoretical research in the interdisciplinary and rapidly expanding field of human brain mapping. The journal features research derived from non-invasive brain imaging modalities used to explore the spatial and temporal organization of the neural systems supporting human behavior. Imaging modalities of interest include positron emission tomography, event-related potentials, electro-and magnetoencephalography, magnetic resonance imaging, and single-photon emission tomography. Brain mapping research in both normal and clinical populations is encouraged. Article formats include Research Articles, Review Articles, Clinical Case Studies, and Technique, as well as Technological Developments, Theoretical Articles, and Synthetic Reviews. Technical advances, such as novel brain imaging methods, analyses for detecting or localizing neural activity, synergistic uses of multiple imaging modalities, and strategies for the design of behavioral paradigms and neural-systems modeling are of particular interest. The journal endorses the propagation of methodological standards and encourages database development in the field of human brain mapping.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信