无人机OAM-MDI-QKD参数优化的改进灰狼-差分进化算法

IF 4.3 Q1 OPTICS
Dan Wu, Jiahao Li, Xile Cui, Zhifeng Deng, Jie Tang, Yuexiang Cao, Ying Liu, Haoran Hu, Ya Wang, XingYu Wang, Huicun Yu, Jiahua Wei, Huazhi Lun, Lei Shi
{"title":"无人机OAM-MDI-QKD参数优化的改进灰狼-差分进化算法","authors":"Dan Wu,&nbsp;Jiahao Li,&nbsp;Xile Cui,&nbsp;Zhifeng Deng,&nbsp;Jie Tang,&nbsp;Yuexiang Cao,&nbsp;Ying Liu,&nbsp;Haoran Hu,&nbsp;Ya Wang,&nbsp;XingYu Wang,&nbsp;Huicun Yu,&nbsp;Jiahua Wei,&nbsp;Huazhi Lun,&nbsp;Lei Shi","doi":"10.1002/qute.202400423","DOIUrl":null,"url":null,"abstract":"<p>The integration of unconditional security of quantum key distribution (QKD) with the flexibility of unmanned aerial vehicles (UAVs) presents significant potential for the deployment of comprehensive quantum networks. However, imperfect components of practical QKD systems offer avenues for eavesdropping, while the limited payload capacity and vibrations of UAVs present substantial challenges. This paper introduces an orbital angular momentum (OAM) encoding strategy combined with decoy-state and the measurement-device-independent QKD (MDI-QKD) protocol to address security issues and reference frame misalignment in UAV-based QKD systems. Nevertheless, the communication performance of the OAM-MDI-QKD system is significantly affected by complex environmental challenges in the airborne channel. To improve the degraded communication performance in airborne platforms, an enhanced grey wolf optimization-differential evolution (GWO-DE) algorithm is developed, utilizing chaotic mapping and a nonlinear decay factor to strengthen global search and convergence capabilities, which effectively addresses the search limitations of local search algorithms (LSA) when dealing with high-dimensional objective functions. Simulation results demonstrate that the GWO-DE algorithm outperforms other traditional optimization algorithms in terms of optimization precision and transmission distance enhancement, with computational speed meeting system requirements.</p>","PeriodicalId":72073,"journal":{"name":"Advanced quantum technologies","volume":"8 7","pages":""},"PeriodicalIF":4.3000,"publicationDate":"2025-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Grey Wolf-Differential Evolution Algorithm for UAV OAM-MDI-QKD Parameter Optimization\",\"authors\":\"Dan Wu,&nbsp;Jiahao Li,&nbsp;Xile Cui,&nbsp;Zhifeng Deng,&nbsp;Jie Tang,&nbsp;Yuexiang Cao,&nbsp;Ying Liu,&nbsp;Haoran Hu,&nbsp;Ya Wang,&nbsp;XingYu Wang,&nbsp;Huicun Yu,&nbsp;Jiahua Wei,&nbsp;Huazhi Lun,&nbsp;Lei Shi\",\"doi\":\"10.1002/qute.202400423\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The integration of unconditional security of quantum key distribution (QKD) with the flexibility of unmanned aerial vehicles (UAVs) presents significant potential for the deployment of comprehensive quantum networks. However, imperfect components of practical QKD systems offer avenues for eavesdropping, while the limited payload capacity and vibrations of UAVs present substantial challenges. This paper introduces an orbital angular momentum (OAM) encoding strategy combined with decoy-state and the measurement-device-independent QKD (MDI-QKD) protocol to address security issues and reference frame misalignment in UAV-based QKD systems. Nevertheless, the communication performance of the OAM-MDI-QKD system is significantly affected by complex environmental challenges in the airborne channel. To improve the degraded communication performance in airborne platforms, an enhanced grey wolf optimization-differential evolution (GWO-DE) algorithm is developed, utilizing chaotic mapping and a nonlinear decay factor to strengthen global search and convergence capabilities, which effectively addresses the search limitations of local search algorithms (LSA) when dealing with high-dimensional objective functions. Simulation results demonstrate that the GWO-DE algorithm outperforms other traditional optimization algorithms in terms of optimization precision and transmission distance enhancement, with computational speed meeting system requirements.</p>\",\"PeriodicalId\":72073,\"journal\":{\"name\":\"Advanced quantum technologies\",\"volume\":\"8 7\",\"pages\":\"\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced quantum technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://advanced.onlinelibrary.wiley.com/doi/10.1002/qute.202400423\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced quantum technologies","FirstCategoryId":"1085","ListUrlMain":"https://advanced.onlinelibrary.wiley.com/doi/10.1002/qute.202400423","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

量子密钥分发(QKD)的无条件安全性与无人机(uav)的灵活性相结合,为综合量子网络的部署提供了巨大的潜力。然而,实际QKD系统的不完善组件为窃听提供了途径,而无人机有限的有效载荷能力和振动带来了重大挑战。本文介绍了一种结合诱饵状态和测量设备无关QKD (MDI-QKD)协议的轨道角动量(OAM)编码策略,以解决基于无人机的QKD系统中的安全问题和参考帧失调问题。然而,OAM-MDI-QKD系统的通信性能受到机载信道中复杂环境挑战的显著影响。为了改善机载平台通信性能下降的问题,提出了一种增强的灰狼优化-差分进化(GWO-DE)算法,利用混沌映射和非线性衰减因子增强全局搜索和收敛能力,有效地解决了局部搜索算法(LSA)在处理高维目标函数时的搜索局限性。仿真结果表明,GWO-DE算法在优化精度和传输距离增强方面优于其他传统优化算法,计算速度满足系统要求。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Improved Grey Wolf-Differential Evolution Algorithm for UAV OAM-MDI-QKD Parameter Optimization

Improved Grey Wolf-Differential Evolution Algorithm for UAV OAM-MDI-QKD Parameter Optimization

Improved Grey Wolf-Differential Evolution Algorithm for UAV OAM-MDI-QKD Parameter Optimization

Improved Grey Wolf-Differential Evolution Algorithm for UAV OAM-MDI-QKD Parameter Optimization

The integration of unconditional security of quantum key distribution (QKD) with the flexibility of unmanned aerial vehicles (UAVs) presents significant potential for the deployment of comprehensive quantum networks. However, imperfect components of practical QKD systems offer avenues for eavesdropping, while the limited payload capacity and vibrations of UAVs present substantial challenges. This paper introduces an orbital angular momentum (OAM) encoding strategy combined with decoy-state and the measurement-device-independent QKD (MDI-QKD) protocol to address security issues and reference frame misalignment in UAV-based QKD systems. Nevertheless, the communication performance of the OAM-MDI-QKD system is significantly affected by complex environmental challenges in the airborne channel. To improve the degraded communication performance in airborne platforms, an enhanced grey wolf optimization-differential evolution (GWO-DE) algorithm is developed, utilizing chaotic mapping and a nonlinear decay factor to strengthen global search and convergence capabilities, which effectively addresses the search limitations of local search algorithms (LSA) when dealing with high-dimensional objective functions. Simulation results demonstrate that the GWO-DE algorithm outperforms other traditional optimization algorithms in terms of optimization precision and transmission distance enhancement, with computational speed meeting system requirements.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信