Brian K. Wells, Gwyneth K. Garramone, Amira Mahomed, Max Ezin
{"title":"5 -羟色胺受体2B干扰对心脏神经嵴迁移和心脏衍生物的致畸作用","authors":"Brian K. Wells, Gwyneth K. Garramone, Amira Mahomed, Max Ezin","doi":"10.1002/bdr2.2506","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Background</h3>\n \n <p>Cardiac neural crest cells (cNCCs) are critical for heart development, and their disruption can result in congenital heart defects. Serotonin (5-HT) signaling, specifically via 5-HT2B and 5-HT2C receptors, regulates diverse physiological processes, including neural crest migration. This study investigates how modulation of 5-HT2B and 5-HT2C receptor activity impacts cNCC migration and the development of their derivatives, with relevance to serotonergic drug safety during pregnancy.</p>\n </section>\n \n <section>\n \n <h3> Methods</h3>\n \n <p>Chicken embryos at HH8 were treated with 50 μL of 20 μM 1-Methylpsilocin (1-MP), an inverse agonist of 5-HT2B and agonist of 5-HT2C, and collected at HH14 to assess cNCC migration. Embryos were pre-treated with SB242084, a selective 5-HT2C antagonist, to isolate receptor-specific contributions before 1-MP application. Phenotypic outcomes were assessed at HH32 and HH36 for structural heart defects.</p>\n </section>\n \n <section>\n \n <h3> Results</h3>\n \n <p>1-MP disrupted cNCC migration at HH14, evidenced by abnormal shortening of the circumpharyngeal neural crest (CirNCC) stream. Pre-treatment with SB242084 did not rescue the phenotype, implicating 5-HT2B as the primary driver, though potential contributions from 5-HT2C cannot be excluded. At HH32, 1-MP-treated embryos displayed gaps in the aorticopulmonary septum. By HH36, interventricular septal defects and delayed development further supported the role of 5-HT2B in cNCC migration and differentiation.</p>\n </section>\n \n <section>\n \n <h3> Conclusion</h3>\n \n <p>These findings reveal that 5-HT2B receptor activity is critical for cNCC migration and heart development. They underscore the potential teratogenic risks of serotonergic drugs targeting 5-HT2B/5-HT2C receptors during pregnancy, with implications for drug safety and heart morphogenesis.</p>\n </section>\n </div>","PeriodicalId":9121,"journal":{"name":"Birth Defects Research","volume":"117 7","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bdr2.2506","citationCount":"0","resultStr":"{\"title\":\"Teratogenic Effects of Serotonin Receptor 2B Disruption on the Migration and Cardiac Derivatives of the Cardiac Neural Crest\",\"authors\":\"Brian K. Wells, Gwyneth K. Garramone, Amira Mahomed, Max Ezin\",\"doi\":\"10.1002/bdr2.2506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Background</h3>\\n \\n <p>Cardiac neural crest cells (cNCCs) are critical for heart development, and their disruption can result in congenital heart defects. Serotonin (5-HT) signaling, specifically via 5-HT2B and 5-HT2C receptors, regulates diverse physiological processes, including neural crest migration. This study investigates how modulation of 5-HT2B and 5-HT2C receptor activity impacts cNCC migration and the development of their derivatives, with relevance to serotonergic drug safety during pregnancy.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods</h3>\\n \\n <p>Chicken embryos at HH8 were treated with 50 μL of 20 μM 1-Methylpsilocin (1-MP), an inverse agonist of 5-HT2B and agonist of 5-HT2C, and collected at HH14 to assess cNCC migration. Embryos were pre-treated with SB242084, a selective 5-HT2C antagonist, to isolate receptor-specific contributions before 1-MP application. Phenotypic outcomes were assessed at HH32 and HH36 for structural heart defects.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Results</h3>\\n \\n <p>1-MP disrupted cNCC migration at HH14, evidenced by abnormal shortening of the circumpharyngeal neural crest (CirNCC) stream. Pre-treatment with SB242084 did not rescue the phenotype, implicating 5-HT2B as the primary driver, though potential contributions from 5-HT2C cannot be excluded. At HH32, 1-MP-treated embryos displayed gaps in the aorticopulmonary septum. By HH36, interventricular septal defects and delayed development further supported the role of 5-HT2B in cNCC migration and differentiation.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusion</h3>\\n \\n <p>These findings reveal that 5-HT2B receptor activity is critical for cNCC migration and heart development. They underscore the potential teratogenic risks of serotonergic drugs targeting 5-HT2B/5-HT2C receptors during pregnancy, with implications for drug safety and heart morphogenesis.</p>\\n </section>\\n </div>\",\"PeriodicalId\":9121,\"journal\":{\"name\":\"Birth Defects Research\",\"volume\":\"117 7\",\"pages\":\"\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bdr2.2506\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Birth Defects Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bdr2.2506\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"DEVELOPMENTAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Birth Defects Research","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bdr2.2506","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"DEVELOPMENTAL BIOLOGY","Score":null,"Total":0}
Teratogenic Effects of Serotonin Receptor 2B Disruption on the Migration and Cardiac Derivatives of the Cardiac Neural Crest
Background
Cardiac neural crest cells (cNCCs) are critical for heart development, and their disruption can result in congenital heart defects. Serotonin (5-HT) signaling, specifically via 5-HT2B and 5-HT2C receptors, regulates diverse physiological processes, including neural crest migration. This study investigates how modulation of 5-HT2B and 5-HT2C receptor activity impacts cNCC migration and the development of their derivatives, with relevance to serotonergic drug safety during pregnancy.
Methods
Chicken embryos at HH8 were treated with 50 μL of 20 μM 1-Methylpsilocin (1-MP), an inverse agonist of 5-HT2B and agonist of 5-HT2C, and collected at HH14 to assess cNCC migration. Embryos were pre-treated with SB242084, a selective 5-HT2C antagonist, to isolate receptor-specific contributions before 1-MP application. Phenotypic outcomes were assessed at HH32 and HH36 for structural heart defects.
Results
1-MP disrupted cNCC migration at HH14, evidenced by abnormal shortening of the circumpharyngeal neural crest (CirNCC) stream. Pre-treatment with SB242084 did not rescue the phenotype, implicating 5-HT2B as the primary driver, though potential contributions from 5-HT2C cannot be excluded. At HH32, 1-MP-treated embryos displayed gaps in the aorticopulmonary septum. By HH36, interventricular septal defects and delayed development further supported the role of 5-HT2B in cNCC migration and differentiation.
Conclusion
These findings reveal that 5-HT2B receptor activity is critical for cNCC migration and heart development. They underscore the potential teratogenic risks of serotonergic drugs targeting 5-HT2B/5-HT2C receptors during pregnancy, with implications for drug safety and heart morphogenesis.
期刊介绍:
The journal Birth Defects Research publishes original research and reviews in areas related to the etiology of adverse developmental and reproductive outcome. In particular the journal is devoted to the publication of original scientific research that contributes to the understanding of the biology of embryonic development and the prenatal causative factors and mechanisms leading to adverse pregnancy outcomes, namely structural and functional birth defects, pregnancy loss, postnatal functional defects in the human population, and to the identification of prenatal factors and biological mechanisms that reduce these risks.
Adverse reproductive and developmental outcomes may have genetic, environmental, nutritional or epigenetic causes. Accordingly, the journal Birth Defects Research takes an integrated, multidisciplinary approach in its organization and publication strategy. The journal Birth Defects Research contains separate sections for clinical and molecular teratology, developmental and reproductive toxicology, and reviews in developmental biology to acknowledge and accommodate the integrative nature of research in this field. Each section has a dedicated editor who is a leader in his/her field and who has full editorial authority in his/her area.