推进细胞特异性递送:机器学习洞察脂质纳米颗粒设计和细胞趋向性(Adv. Healthcare Mater. 18/2025)

IF 10 2区 医学 Q1 ENGINEERING, BIOMEDICAL
Belal I. Hanafy, Michael J. Munson, Ramesh Soundararajan, Sara Pereira, Audrey Gallud, Sajib Md Sanaullah, Gianluca Carlesso, Mariarosa Mazza
{"title":"推进细胞特异性递送:机器学习洞察脂质纳米颗粒设计和细胞趋向性(Adv. Healthcare Mater. 18/2025)","authors":"Belal I. Hanafy,&nbsp;Michael J. Munson,&nbsp;Ramesh Soundararajan,&nbsp;Sara Pereira,&nbsp;Audrey Gallud,&nbsp;Sajib Md Sanaullah,&nbsp;Gianluca Carlesso,&nbsp;Mariarosa Mazza","doi":"10.1002/adhm.202570107","DOIUrl":null,"url":null,"abstract":"<p><b>Lipid Nanoparticles</b></p><p>In article 2500383, Belal I. Hanafy, Mariarosa Mazza, and co-workers highlight a data-driven strategy integrating Design of Experiments (DoE), High-Throughput Screening, and Machine Learning to systematically optimize lipid nanoparticle (LNP) formulations for selective cellular tropism. By evaluating 180 LNPs across diverse lipid chemistries and molar ratios in various cell models, we reveal formulations insights that enhance immune cell delivery while minimizing liver uptake—enabling targeted LNP design for next-generation therapeutics\n\n <figure>\n <div><picture>\n <source></source></picture><p></p>\n </div>\n </figure></p>","PeriodicalId":113,"journal":{"name":"Advanced Healthcare Materials","volume":"14 18","pages":""},"PeriodicalIF":10.0000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adhm.202570107","citationCount":"0","resultStr":"{\"title\":\"Advancing Cellular-Specific Delivery: Machine Learning Insights into Lipid Nanoparticles Design and Cellular Tropism (Adv. Healthcare Mater. 18/2025)\",\"authors\":\"Belal I. Hanafy,&nbsp;Michael J. Munson,&nbsp;Ramesh Soundararajan,&nbsp;Sara Pereira,&nbsp;Audrey Gallud,&nbsp;Sajib Md Sanaullah,&nbsp;Gianluca Carlesso,&nbsp;Mariarosa Mazza\",\"doi\":\"10.1002/adhm.202570107\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><b>Lipid Nanoparticles</b></p><p>In article 2500383, Belal I. Hanafy, Mariarosa Mazza, and co-workers highlight a data-driven strategy integrating Design of Experiments (DoE), High-Throughput Screening, and Machine Learning to systematically optimize lipid nanoparticle (LNP) formulations for selective cellular tropism. By evaluating 180 LNPs across diverse lipid chemistries and molar ratios in various cell models, we reveal formulations insights that enhance immune cell delivery while minimizing liver uptake—enabling targeted LNP design for next-generation therapeutics\\n\\n <figure>\\n <div><picture>\\n <source></source></picture><p></p>\\n </div>\\n </figure></p>\",\"PeriodicalId\":113,\"journal\":{\"name\":\"Advanced Healthcare Materials\",\"volume\":\"14 18\",\"pages\":\"\"},\"PeriodicalIF\":10.0000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/adhm.202570107\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Healthcare Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/adhm.202570107\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, BIOMEDICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Healthcare Materials","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/adhm.202570107","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

摘要

在文章2500383中,Belal I. Hanafy、Mariarosa Mazza及其同事强调了一种数据驱动的策略,该策略集成了实验设计(DoE)、高通量筛选和机器学习,以系统地优化脂质纳米颗粒(LNP)配方,用于选择性细胞趋向性。通过在各种细胞模型中评估180种不同脂质化学和摩尔比的LNP,我们揭示了增强免疫细胞递送的配方见解,同时最大限度地减少肝脏摄取,从而为下一代疗法设计靶向LNP
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancing Cellular-Specific Delivery: Machine Learning Insights into Lipid Nanoparticles Design and Cellular Tropism (Adv. Healthcare Mater. 18/2025)

Advancing Cellular-Specific Delivery: Machine Learning Insights into Lipid Nanoparticles Design and Cellular Tropism (Adv. Healthcare Mater. 18/2025)

Lipid Nanoparticles

In article 2500383, Belal I. Hanafy, Mariarosa Mazza, and co-workers highlight a data-driven strategy integrating Design of Experiments (DoE), High-Throughput Screening, and Machine Learning to systematically optimize lipid nanoparticle (LNP) formulations for selective cellular tropism. By evaluating 180 LNPs across diverse lipid chemistries and molar ratios in various cell models, we reveal formulations insights that enhance immune cell delivery while minimizing liver uptake—enabling targeted LNP design for next-generation therapeutics

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Healthcare Materials
Advanced Healthcare Materials 工程技术-生物材料
CiteScore
14.40
自引率
3.00%
发文量
600
审稿时长
1.8 months
期刊介绍: Advanced Healthcare Materials, a distinguished member of the esteemed Advanced portfolio, has been dedicated to disseminating cutting-edge research on materials, devices, and technologies for enhancing human well-being for over ten years. As a comprehensive journal, it encompasses a wide range of disciplines such as biomaterials, biointerfaces, nanomedicine and nanotechnology, tissue engineering, and regenerative medicine.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信