激光切割制造空心谐振结构磁电传感器

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Jingen Wu;Jiacheng Qiao;Sheng Zou;Xianfeng Liang;Bingfeng Ge;Junhao Chen;Yongjun Du;Yiwei Xu;Zhiguang Wang;Jinghong Guo;Zhongqiang Hu;Ming Liu
{"title":"激光切割制造空心谐振结构磁电传感器","authors":"Jingen Wu;Jiacheng Qiao;Sheng Zou;Xianfeng Liang;Bingfeng Ge;Junhao Chen;Yongjun Du;Yiwei Xu;Zhiguang Wang;Jinghong Guo;Zhongqiang Hu;Ming Liu","doi":"10.1109/JSEN.2025.3575602","DOIUrl":null,"url":null,"abstract":"In this work, the laser cutting method is applied to the fabrication of magnetoelectric (ME) sensors, particularly for machining hollowed-out resonant structures. Three types of hollowed-out resonant structures, i.e., longitudinal bending, circular bending, and longitudinal extension resonators, are fabricated using laser cutting. Experimental results reveal that the hollowed-out resonant structure significantly enhances the ME coupling effect. ME sensors based on longitudinal bending, circular bending, and longitudinal extension resonators exhibit excellent performance, with resonance ME coefficients of 2.17, 13.29, and 15.2 V/(cm<inline-formula> <tex-math>$\\cdot $ </tex-math></inline-formula>Oe), respectively. Meanwhile, the proposed ME sensors can detect weak magnetic fields at the pT level. The limit of detection (LOD) under resonance frequency for ME sensors based on longitudinal bending resonator, circular bending resonator, and longitudinal extension resonator can reach up to 39.49, 7.99, and 6.28 pT, respectively, which are competitive among other typical ME sensors. The temperature tolerance test indicates that the circular bending resonator presents the highest temperature stability, with the resonance frequency drift less than 3% in the temperature range from <inline-formula> <tex-math>$20~^{\\circ }$ </tex-math></inline-formula>C to <inline-formula> <tex-math>$70~^{\\circ }$ </tex-math></inline-formula>C. With enhanced performance, ME sensors based on hollowed-out resonant structures demonstrate great potential for applications, such as current detection, position sensing, and industrial control.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 14","pages":"26542-26552"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Magnetoelectric Sensors With Hollowed-Out Resonant Structure Fabricated by Laser Cutting\",\"authors\":\"Jingen Wu;Jiacheng Qiao;Sheng Zou;Xianfeng Liang;Bingfeng Ge;Junhao Chen;Yongjun Du;Yiwei Xu;Zhiguang Wang;Jinghong Guo;Zhongqiang Hu;Ming Liu\",\"doi\":\"10.1109/JSEN.2025.3575602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, the laser cutting method is applied to the fabrication of magnetoelectric (ME) sensors, particularly for machining hollowed-out resonant structures. Three types of hollowed-out resonant structures, i.e., longitudinal bending, circular bending, and longitudinal extension resonators, are fabricated using laser cutting. Experimental results reveal that the hollowed-out resonant structure significantly enhances the ME coupling effect. ME sensors based on longitudinal bending, circular bending, and longitudinal extension resonators exhibit excellent performance, with resonance ME coefficients of 2.17, 13.29, and 15.2 V/(cm<inline-formula> <tex-math>$\\\\cdot $ </tex-math></inline-formula>Oe), respectively. Meanwhile, the proposed ME sensors can detect weak magnetic fields at the pT level. The limit of detection (LOD) under resonance frequency for ME sensors based on longitudinal bending resonator, circular bending resonator, and longitudinal extension resonator can reach up to 39.49, 7.99, and 6.28 pT, respectively, which are competitive among other typical ME sensors. The temperature tolerance test indicates that the circular bending resonator presents the highest temperature stability, with the resonance frequency drift less than 3% in the temperature range from <inline-formula> <tex-math>$20~^{\\\\circ }$ </tex-math></inline-formula>C to <inline-formula> <tex-math>$70~^{\\\\circ }$ </tex-math></inline-formula>C. With enhanced performance, ME sensors based on hollowed-out resonant structures demonstrate great potential for applications, such as current detection, position sensing, and industrial control.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 14\",\"pages\":\"26542-26552\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11027652/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11027652/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

在这项工作中,激光切割方法被应用于磁电(ME)传感器的制造,特别是用于加工空心谐振结构。利用激光切割技术制备了纵向弯曲腔、圆形弯曲腔和纵向延伸腔三种空心谐振结构。实验结果表明,空心谐振结构显著增强了ME耦合效应。基于纵向弯曲、圆形弯曲和纵向延伸谐振腔的ME传感器表现出优异的性能,共振ME系数分别为2.17、13.29和15.2 V/(cm $\cdot $ Oe)。同时,本文提出的电磁传感器可以检测pT级的弱磁场。基于纵向弯曲谐振器、圆形弯曲谐振器和纵向延伸谐振器的ME传感器在谐振频率下的检出限(LOD)分别可达39.49、7.99和6.28 pT,与其他典型ME传感器相比具有竞争力。温度容限测试表明,圆形弯曲谐振器在20~ 70~ 70~^{\circ}$ C的温度范围内具有最高的温度稳定性,谐振频率漂移小于3%。空心谐振结构的ME传感器性能增强,在电流检测、位置传感和工业控制等方面具有很大的应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Magnetoelectric Sensors With Hollowed-Out Resonant Structure Fabricated by Laser Cutting
In this work, the laser cutting method is applied to the fabrication of magnetoelectric (ME) sensors, particularly for machining hollowed-out resonant structures. Three types of hollowed-out resonant structures, i.e., longitudinal bending, circular bending, and longitudinal extension resonators, are fabricated using laser cutting. Experimental results reveal that the hollowed-out resonant structure significantly enhances the ME coupling effect. ME sensors based on longitudinal bending, circular bending, and longitudinal extension resonators exhibit excellent performance, with resonance ME coefficients of 2.17, 13.29, and 15.2 V/(cm $\cdot $ Oe), respectively. Meanwhile, the proposed ME sensors can detect weak magnetic fields at the pT level. The limit of detection (LOD) under resonance frequency for ME sensors based on longitudinal bending resonator, circular bending resonator, and longitudinal extension resonator can reach up to 39.49, 7.99, and 6.28 pT, respectively, which are competitive among other typical ME sensors. The temperature tolerance test indicates that the circular bending resonator presents the highest temperature stability, with the resonance frequency drift less than 3% in the temperature range from $20~^{\circ }$ C to $70~^{\circ }$ C. With enhanced performance, ME sensors based on hollowed-out resonant structures demonstrate great potential for applications, such as current detection, position sensing, and industrial control.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信