自动清扫车辆多模态融合感知技术研究

IF 4.3 2区 综合性期刊 Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
Yang Zhang;Bo Yang;Wukun Lei;Xiaofei Pei
{"title":"自动清扫车辆多模态融合感知技术研究","authors":"Yang Zhang;Bo Yang;Wukun Lei;Xiaofei Pei","doi":"10.1109/JSEN.2025.3578375","DOIUrl":null,"url":null,"abstract":"This article proposes a multimodal fusion framework to address the challenges of detecting and tracking specialized vehicles and dynamic targets in complex industrial park environments. The framework integrates LiDAR, a monocular Camera, and an inertial navigation system (INS) to achieve precise obstacle perception and stable tracking through dynamic region of interest (ROI) cropping, optimized point cloud clustering, target detection, and multimodal perception fusion. First, a path-aware dynamic ROI cropping method and a multiregion density-aware seed point cloud ground segmentation approach are introduced to improve adaptability and point cloud processing efficiency. Second, a two-stage refinement strategy method is proposed to enhance target clustering accuracy. Furthermore, by combining the 2-D detection network, a multimodal perception fusion module, and a multiobject tracking (MOT) strategy, the framework significantly improves fusion efficiency and matching accuracy. Field tests demonstrate that the framework achieves excellent performance, with static object localization deviations below 0.8 m and reliable state estimation for dynamic targets. On a custom dataset, the monocular Camera achieves 91.67% accuracy for specialized vehicles, while the fusion framework exhibits strong adaptability and reliability in complex scenarios.","PeriodicalId":447,"journal":{"name":"IEEE Sensors Journal","volume":"25 14","pages":"27743-27753"},"PeriodicalIF":4.3000,"publicationDate":"2025-06-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Multimodal Fusion Perception Technology for Autonomous Sweeping Vehicle\",\"authors\":\"Yang Zhang;Bo Yang;Wukun Lei;Xiaofei Pei\",\"doi\":\"10.1109/JSEN.2025.3578375\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article proposes a multimodal fusion framework to address the challenges of detecting and tracking specialized vehicles and dynamic targets in complex industrial park environments. The framework integrates LiDAR, a monocular Camera, and an inertial navigation system (INS) to achieve precise obstacle perception and stable tracking through dynamic region of interest (ROI) cropping, optimized point cloud clustering, target detection, and multimodal perception fusion. First, a path-aware dynamic ROI cropping method and a multiregion density-aware seed point cloud ground segmentation approach are introduced to improve adaptability and point cloud processing efficiency. Second, a two-stage refinement strategy method is proposed to enhance target clustering accuracy. Furthermore, by combining the 2-D detection network, a multimodal perception fusion module, and a multiobject tracking (MOT) strategy, the framework significantly improves fusion efficiency and matching accuracy. Field tests demonstrate that the framework achieves excellent performance, with static object localization deviations below 0.8 m and reliable state estimation for dynamic targets. On a custom dataset, the monocular Camera achieves 91.67% accuracy for specialized vehicles, while the fusion framework exhibits strong adaptability and reliability in complex scenarios.\",\"PeriodicalId\":447,\"journal\":{\"name\":\"IEEE Sensors Journal\",\"volume\":\"25 14\",\"pages\":\"27743-27753\"},\"PeriodicalIF\":4.3000,\"publicationDate\":\"2025-06-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Sensors Journal\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/11037394/\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Sensors Journal","FirstCategoryId":"103","ListUrlMain":"https://ieeexplore.ieee.org/document/11037394/","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一个多模态融合框架,以解决复杂工业园区环境中检测和跟踪专用车辆和动态目标的挑战。该框架集成了激光雷达、单目相机和惯性导航系统(INS),通过动态感兴趣区域(ROI)裁剪、优化的点云聚类、目标检测和多模态感知融合,实现精确的障碍物感知和稳定的跟踪。首先,提出了路径感知的动态ROI裁剪方法和多区域密度感知的种子点云地面分割方法,提高了自适应性和点云处理效率;其次,提出了一种两阶段细化策略方法,提高目标聚类精度。此外,该框架通过结合二维检测网络、多模态感知融合模块和多目标跟踪策略,显著提高了融合效率和匹配精度。现场试验表明,该框架具有良好的性能,静态目标定位偏差小于0.8 m,动态目标状态估计可靠。在自定义数据集上,单目摄像机对专用车辆的准确率达到91.67%,融合框架在复杂场景下具有较强的适应性和可靠性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Multimodal Fusion Perception Technology for Autonomous Sweeping Vehicle
This article proposes a multimodal fusion framework to address the challenges of detecting and tracking specialized vehicles and dynamic targets in complex industrial park environments. The framework integrates LiDAR, a monocular Camera, and an inertial navigation system (INS) to achieve precise obstacle perception and stable tracking through dynamic region of interest (ROI) cropping, optimized point cloud clustering, target detection, and multimodal perception fusion. First, a path-aware dynamic ROI cropping method and a multiregion density-aware seed point cloud ground segmentation approach are introduced to improve adaptability and point cloud processing efficiency. Second, a two-stage refinement strategy method is proposed to enhance target clustering accuracy. Furthermore, by combining the 2-D detection network, a multimodal perception fusion module, and a multiobject tracking (MOT) strategy, the framework significantly improves fusion efficiency and matching accuracy. Field tests demonstrate that the framework achieves excellent performance, with static object localization deviations below 0.8 m and reliable state estimation for dynamic targets. On a custom dataset, the monocular Camera achieves 91.67% accuracy for specialized vehicles, while the fusion framework exhibits strong adaptability and reliability in complex scenarios.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Sensors Journal
IEEE Sensors Journal 工程技术-工程:电子与电气
CiteScore
7.70
自引率
14.00%
发文量
2058
审稿时长
5.2 months
期刊介绍: The fields of interest of the IEEE Sensors Journal are the theory, design , fabrication, manufacturing and applications of devices for sensing and transducing physical, chemical and biological phenomena, with emphasis on the electronics and physics aspect of sensors and integrated sensors-actuators. IEEE Sensors Journal deals with the following: -Sensor Phenomenology, Modelling, and Evaluation -Sensor Materials, Processing, and Fabrication -Chemical and Gas Sensors -Microfluidics and Biosensors -Optical Sensors -Physical Sensors: Temperature, Mechanical, Magnetic, and others -Acoustic and Ultrasonic Sensors -Sensor Packaging -Sensor Networks -Sensor Applications -Sensor Systems: Signals, Processing, and Interfaces -Actuators and Sensor Power Systems -Sensor Signal Processing for high precision and stability (amplification, filtering, linearization, modulation/demodulation) and under harsh conditions (EMC, radiation, humidity, temperature); energy consumption/harvesting -Sensor Data Processing (soft computing with sensor data, e.g., pattern recognition, machine learning, evolutionary computation; sensor data fusion, processing of wave e.g., electromagnetic and acoustic; and non-wave, e.g., chemical, gravity, particle, thermal, radiative and non-radiative sensor data, detection, estimation and classification based on sensor data) -Sensors in Industrial Practice
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信