Zijian Zhang , Zitao Wang , Ming Shao , Yangyang Dong , Fenglei Ni
{"title":"一种基于平面螺旋线圈探头的新型人形机器人关节磁弹性扭矩传感器","authors":"Zijian Zhang , Zitao Wang , Ming Shao , Yangyang Dong , Fenglei Ni","doi":"10.1016/j.birob.2025.100229","DOIUrl":null,"url":null,"abstract":"<div><div>Humanoid robot joints require real-time torque detection to provide accurate force feedback information for the control system. To meet the measurement requirements and realize the miniaturization of the sensor, a torque sensor based on the magnetoelastic effect is developed, utilizing planar spiral coils as detection probes. In this work, a planar spiral coil mutual inductance calculation model is established to solve the mutual inductance coefficient, and the mechanical structure and circuit design of the sensor are completed. Finally, a torque loading platform is built to perform calibration experiments, and the hysteresis model is improved to compensate for the hysteresis phenomenon. The calibration results indicate that the sensor shows excellent loaded nonlinearity of 3.08%F.S., unloaded nonlinearity of 2.71%F.S., loaded repeatability of 2.48%F.S., unloaded repeatability of 1.89%F.S. and hysteresis of 1.9%F.S., at a compact probe size of 13.8<span><math><mrow><mo>×</mo><mn>9</mn><mo>.</mo><mn>9</mn><mo>×</mo></mrow></math></span>1.8 mm.</div></div>","PeriodicalId":100184,"journal":{"name":"Biomimetic Intelligence and Robotics","volume":"5 3","pages":"Article 100229"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A novel magnetoelastic torque sensor with planar spiral coil probes for humanoid robot joints\",\"authors\":\"Zijian Zhang , Zitao Wang , Ming Shao , Yangyang Dong , Fenglei Ni\",\"doi\":\"10.1016/j.birob.2025.100229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Humanoid robot joints require real-time torque detection to provide accurate force feedback information for the control system. To meet the measurement requirements and realize the miniaturization of the sensor, a torque sensor based on the magnetoelastic effect is developed, utilizing planar spiral coils as detection probes. In this work, a planar spiral coil mutual inductance calculation model is established to solve the mutual inductance coefficient, and the mechanical structure and circuit design of the sensor are completed. Finally, a torque loading platform is built to perform calibration experiments, and the hysteresis model is improved to compensate for the hysteresis phenomenon. The calibration results indicate that the sensor shows excellent loaded nonlinearity of 3.08%F.S., unloaded nonlinearity of 2.71%F.S., loaded repeatability of 2.48%F.S., unloaded repeatability of 1.89%F.S. and hysteresis of 1.9%F.S., at a compact probe size of 13.8<span><math><mrow><mo>×</mo><mn>9</mn><mo>.</mo><mn>9</mn><mo>×</mo></mrow></math></span>1.8 mm.</div></div>\",\"PeriodicalId\":100184,\"journal\":{\"name\":\"Biomimetic Intelligence and Robotics\",\"volume\":\"5 3\",\"pages\":\"Article 100229\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biomimetic Intelligence and Robotics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667379725000208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetic Intelligence and Robotics","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667379725000208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A novel magnetoelastic torque sensor with planar spiral coil probes for humanoid robot joints
Humanoid robot joints require real-time torque detection to provide accurate force feedback information for the control system. To meet the measurement requirements and realize the miniaturization of the sensor, a torque sensor based on the magnetoelastic effect is developed, utilizing planar spiral coils as detection probes. In this work, a planar spiral coil mutual inductance calculation model is established to solve the mutual inductance coefficient, and the mechanical structure and circuit design of the sensor are completed. Finally, a torque loading platform is built to perform calibration experiments, and the hysteresis model is improved to compensate for the hysteresis phenomenon. The calibration results indicate that the sensor shows excellent loaded nonlinearity of 3.08%F.S., unloaded nonlinearity of 2.71%F.S., loaded repeatability of 2.48%F.S., unloaded repeatability of 1.89%F.S. and hysteresis of 1.9%F.S., at a compact probe size of 13.81.8 mm.