Renjian Xie , Xiu-e Li , Xiaohong Liu , Jialin Li , Shanshan Zhou , Yumei Li , Hui Yang , Guoming Yuan , Kun Wu , Kunxin Wang
{"title":"受犰狳壳的启发,黑色磷纳米片穿上了Ar等离子防护服,增强了环氧树脂的防火安全性","authors":"Renjian Xie , Xiu-e Li , Xiaohong Liu , Jialin Li , Shanshan Zhou , Yumei Li , Hui Yang , Guoming Yuan , Kun Wu , Kunxin Wang","doi":"10.1016/j.polymdegradstab.2025.111533","DOIUrl":null,"url":null,"abstract":"<div><div>Black phosphorous (BP) nanosheets as a novel two-dimensional material have revealed dramatically fire safety promotion in polymer nanocomposite. Herein, plasma cleaning machine (PC), equiped with Ar plasma, was applied to protect BP (PCBP) to enhance the environmental stability of BP. Further, the fire safety of epoxy resin (EP) was enhanced. The molecular dynamics simulation (MDS) results indicate that the values of binding energy between Ar plasma and BP at 0 K, 200 K, 400 K, 600 K, and 800 K were -847.0148, -847.3044, -847.3012, -847.2975, and -847.3035 eV, respectively. It meant that there was a strong electrostatic interaction between BP and Ar plasma, and it was not affected by temperature. Electron Paramagnetic Resonance (EPR) test revealed that the free radical strength of PCBP decreased than BP, suggesting that the environmental stability of PCBP was better than that of BP. The results of cone calorimetry test (CCT) displayed that the flame retardant ability of EP was enormously improved through the addition amount of 1.5 wt % PCBP nanosheets, for instance, the peak heat release rate (pHRR) and the total heat release (THR) were descended by 22.98 % and 16.24 %, respectively. Epoxy nanocomposite with 1.5 wt% PCBP nanosheets can achieve UL-94 V-0 rating level with a limit oxygen index (LOI) of 30.4. Thermogravimetric analysis (TGA) result displayed that the residual weight rate increased by 23.27 %. Raman test of the residual char layer proved that the value of I<sub>D</sub>/I<sub>G</sub> declined from 4.021 to 3.098, indicating a promotion in the degree of graphitization. These were attributable to the cooperation effect of physical barrier, free radicals trapping and catalytic conversion into char of PCBP.</div></div>","PeriodicalId":406,"journal":{"name":"Polymer Degradation and Stability","volume":"241 ","pages":"Article 111533"},"PeriodicalIF":7.4000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Inspired by the shell of an armadillo-black phosphorus nanosheets weared Ar plasma protective clothing to enhance the fire safety of epoxy resin\",\"authors\":\"Renjian Xie , Xiu-e Li , Xiaohong Liu , Jialin Li , Shanshan Zhou , Yumei Li , Hui Yang , Guoming Yuan , Kun Wu , Kunxin Wang\",\"doi\":\"10.1016/j.polymdegradstab.2025.111533\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Black phosphorous (BP) nanosheets as a novel two-dimensional material have revealed dramatically fire safety promotion in polymer nanocomposite. Herein, plasma cleaning machine (PC), equiped with Ar plasma, was applied to protect BP (PCBP) to enhance the environmental stability of BP. Further, the fire safety of epoxy resin (EP) was enhanced. The molecular dynamics simulation (MDS) results indicate that the values of binding energy between Ar plasma and BP at 0 K, 200 K, 400 K, 600 K, and 800 K were -847.0148, -847.3044, -847.3012, -847.2975, and -847.3035 eV, respectively. It meant that there was a strong electrostatic interaction between BP and Ar plasma, and it was not affected by temperature. Electron Paramagnetic Resonance (EPR) test revealed that the free radical strength of PCBP decreased than BP, suggesting that the environmental stability of PCBP was better than that of BP. The results of cone calorimetry test (CCT) displayed that the flame retardant ability of EP was enormously improved through the addition amount of 1.5 wt % PCBP nanosheets, for instance, the peak heat release rate (pHRR) and the total heat release (THR) were descended by 22.98 % and 16.24 %, respectively. Epoxy nanocomposite with 1.5 wt% PCBP nanosheets can achieve UL-94 V-0 rating level with a limit oxygen index (LOI) of 30.4. Thermogravimetric analysis (TGA) result displayed that the residual weight rate increased by 23.27 %. Raman test of the residual char layer proved that the value of I<sub>D</sub>/I<sub>G</sub> declined from 4.021 to 3.098, indicating a promotion in the degree of graphitization. These were attributable to the cooperation effect of physical barrier, free radicals trapping and catalytic conversion into char of PCBP.</div></div>\",\"PeriodicalId\":406,\"journal\":{\"name\":\"Polymer Degradation and Stability\",\"volume\":\"241 \",\"pages\":\"Article 111533\"},\"PeriodicalIF\":7.4000,\"publicationDate\":\"2025-07-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Polymer Degradation and Stability\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141391025003623\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Polymer Degradation and Stability","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141391025003623","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
Inspired by the shell of an armadillo-black phosphorus nanosheets weared Ar plasma protective clothing to enhance the fire safety of epoxy resin
Black phosphorous (BP) nanosheets as a novel two-dimensional material have revealed dramatically fire safety promotion in polymer nanocomposite. Herein, plasma cleaning machine (PC), equiped with Ar plasma, was applied to protect BP (PCBP) to enhance the environmental stability of BP. Further, the fire safety of epoxy resin (EP) was enhanced. The molecular dynamics simulation (MDS) results indicate that the values of binding energy between Ar plasma and BP at 0 K, 200 K, 400 K, 600 K, and 800 K were -847.0148, -847.3044, -847.3012, -847.2975, and -847.3035 eV, respectively. It meant that there was a strong electrostatic interaction between BP and Ar plasma, and it was not affected by temperature. Electron Paramagnetic Resonance (EPR) test revealed that the free radical strength of PCBP decreased than BP, suggesting that the environmental stability of PCBP was better than that of BP. The results of cone calorimetry test (CCT) displayed that the flame retardant ability of EP was enormously improved through the addition amount of 1.5 wt % PCBP nanosheets, for instance, the peak heat release rate (pHRR) and the total heat release (THR) were descended by 22.98 % and 16.24 %, respectively. Epoxy nanocomposite with 1.5 wt% PCBP nanosheets can achieve UL-94 V-0 rating level with a limit oxygen index (LOI) of 30.4. Thermogravimetric analysis (TGA) result displayed that the residual weight rate increased by 23.27 %. Raman test of the residual char layer proved that the value of ID/IG declined from 4.021 to 3.098, indicating a promotion in the degree of graphitization. These were attributable to the cooperation effect of physical barrier, free radicals trapping and catalytic conversion into char of PCBP.
期刊介绍:
Polymer Degradation and Stability deals with the degradation reactions and their control which are a major preoccupation of practitioners of the many and diverse aspects of modern polymer technology.
Deteriorative reactions occur during processing, when polymers are subjected to heat, oxygen and mechanical stress, and during the useful life of the materials when oxygen and sunlight are the most important degradative agencies. In more specialised applications, degradation may be induced by high energy radiation, ozone, atmospheric pollutants, mechanical stress, biological action, hydrolysis and many other influences. The mechanisms of these reactions and stabilisation processes must be understood if the technology and application of polymers are to continue to advance. The reporting of investigations of this kind is therefore a major function of this journal.
However there are also new developments in polymer technology in which degradation processes find positive applications. For example, photodegradable plastics are now available, the recycling of polymeric products will become increasingly important, degradation and combustion studies are involved in the definition of the fire hazards which are associated with polymeric materials and the microelectronics industry is vitally dependent upon polymer degradation in the manufacture of its circuitry. Polymer properties may also be improved by processes like curing and grafting, the chemistry of which can be closely related to that which causes physical deterioration in other circumstances.