Diana R. Cunha, Marcela A. Segundo, M. Beatriz Quinaz
{"title":"基于金纳米结构和刀豆蛋白A的糖蛋白检测阻抗生物传感器","authors":"Diana R. Cunha, Marcela A. Segundo, M. Beatriz Quinaz","doi":"10.1016/j.bioelechem.2025.109042","DOIUrl":null,"url":null,"abstract":"<div><div>Glycoproteins play critical roles in biological processes and serve as key biomarkers in diseases such as cancer. They also represent a significant category of biopharmaceuticals, such as monoclonal antibodies and therapeutic enzymes where glycosylation critically impacts their stability, efficacy, and immunogenicity. Consequently, reliable analytical methods are essential for assessing glycoproteins in both clinical diagnostics and biomanufacturing. In this work, it was developed a label-free impedimetric biosensor for glycoprotein detection using Concanavalin A immobilized on a self-assembled monolayer-modified screen-printed gold electrode. The biosensor construction was optimized through gold electrodeposition, mitigating batch-to-batch variability and improving sensor reproducibility, by combining an initial pre-treatment with potassium hydroxide + hydrogen peroxide with the electrodeposition of Au nanostructures. Electrochemical impedance spectroscopy was employed to monitor glycoprotein-lectin interactions, with invertase as a model glycoprotein. The biosensor demonstrated good sensitivity, achieving a detection limit of 0.19 nM for invertase and 0.69 μM for Rituximab (therapeutic mAb). Differences in glycan structure and charge influenced biosensor response. The sensor's applicability in biopharmaceutical analysis was validated through Rituximab detection in a surrogate cell culture supernatant, achieving a recovery of 101 %. These findings underscore the potential of Concanavalin A-based impedimetric biosensors for rapid, cost-effective tool for glycoprotein analysis in biopharmaceutical quality control.</div></div>","PeriodicalId":252,"journal":{"name":"Bioelectrochemistry","volume":"166 ","pages":"Article 109042"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impedimetric biosensor based on gold nanostructures and concanavalin A for glycoproteins detection\",\"authors\":\"Diana R. Cunha, Marcela A. Segundo, M. Beatriz Quinaz\",\"doi\":\"10.1016/j.bioelechem.2025.109042\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Glycoproteins play critical roles in biological processes and serve as key biomarkers in diseases such as cancer. They also represent a significant category of biopharmaceuticals, such as monoclonal antibodies and therapeutic enzymes where glycosylation critically impacts their stability, efficacy, and immunogenicity. Consequently, reliable analytical methods are essential for assessing glycoproteins in both clinical diagnostics and biomanufacturing. In this work, it was developed a label-free impedimetric biosensor for glycoprotein detection using Concanavalin A immobilized on a self-assembled monolayer-modified screen-printed gold electrode. The biosensor construction was optimized through gold electrodeposition, mitigating batch-to-batch variability and improving sensor reproducibility, by combining an initial pre-treatment with potassium hydroxide + hydrogen peroxide with the electrodeposition of Au nanostructures. Electrochemical impedance spectroscopy was employed to monitor glycoprotein-lectin interactions, with invertase as a model glycoprotein. The biosensor demonstrated good sensitivity, achieving a detection limit of 0.19 nM for invertase and 0.69 μM for Rituximab (therapeutic mAb). Differences in glycan structure and charge influenced biosensor response. The sensor's applicability in biopharmaceutical analysis was validated through Rituximab detection in a surrogate cell culture supernatant, achieving a recovery of 101 %. These findings underscore the potential of Concanavalin A-based impedimetric biosensors for rapid, cost-effective tool for glycoprotein analysis in biopharmaceutical quality control.</div></div>\",\"PeriodicalId\":252,\"journal\":{\"name\":\"Bioelectrochemistry\",\"volume\":\"166 \",\"pages\":\"Article 109042\"},\"PeriodicalIF\":4.5000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Bioelectrochemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1567539425001458\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioelectrochemistry","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1567539425001458","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Impedimetric biosensor based on gold nanostructures and concanavalin A for glycoproteins detection
Glycoproteins play critical roles in biological processes and serve as key biomarkers in diseases such as cancer. They also represent a significant category of biopharmaceuticals, such as monoclonal antibodies and therapeutic enzymes where glycosylation critically impacts their stability, efficacy, and immunogenicity. Consequently, reliable analytical methods are essential for assessing glycoproteins in both clinical diagnostics and biomanufacturing. In this work, it was developed a label-free impedimetric biosensor for glycoprotein detection using Concanavalin A immobilized on a self-assembled monolayer-modified screen-printed gold electrode. The biosensor construction was optimized through gold electrodeposition, mitigating batch-to-batch variability and improving sensor reproducibility, by combining an initial pre-treatment with potassium hydroxide + hydrogen peroxide with the electrodeposition of Au nanostructures. Electrochemical impedance spectroscopy was employed to monitor glycoprotein-lectin interactions, with invertase as a model glycoprotein. The biosensor demonstrated good sensitivity, achieving a detection limit of 0.19 nM for invertase and 0.69 μM for Rituximab (therapeutic mAb). Differences in glycan structure and charge influenced biosensor response. The sensor's applicability in biopharmaceutical analysis was validated through Rituximab detection in a surrogate cell culture supernatant, achieving a recovery of 101 %. These findings underscore the potential of Concanavalin A-based impedimetric biosensors for rapid, cost-effective tool for glycoprotein analysis in biopharmaceutical quality control.
期刊介绍:
An International Journal Devoted to Electrochemical Aspects of Biology and Biological Aspects of Electrochemistry
Bioelectrochemistry is an international journal devoted to electrochemical principles in biology and biological aspects of electrochemistry. It publishes experimental and theoretical papers dealing with the electrochemical aspects of:
• Electrified interfaces (electric double layers, adsorption, electron transfer, protein electrochemistry, basic principles of biosensors, biosensor interfaces and bio-nanosensor design and construction.
• Electric and magnetic field effects (field-dependent processes, field interactions with molecules, intramolecular field effects, sensory systems for electric and magnetic fields, molecular and cellular mechanisms)
• Bioenergetics and signal transduction (energy conversion, photosynthetic and visual membranes)
• Biomembranes and model membranes (thermodynamics and mechanics, membrane transport, electroporation, fusion and insertion)
• Electrochemical applications in medicine and biotechnology (drug delivery and gene transfer to cells and tissues, iontophoresis, skin electroporation, injury and repair).
• Organization and use of arrays in-vitro and in-vivo, including as part of feedback control.
• Electrochemical interrogation of biofilms as generated by microorganisms and tissue reaction associated with medical implants.