提升锂离子电池的范例:复杂的离子结构在锂过量层状氧化物前所未有的电化学性能

IF 42.9 Q1 ELECTROCHEMISTRY
Jun Ho Yu , Konstantin Köster , Natalia Voronina , Sungkyu Kim , Hyeon-Ji Shin , Kyung Sun Kim , Kyuwook Ihm , Hyungsub Kim , Hun-Gi Jung , Koji Yazawa , Olivier Guillon , Pierluigi Gargiani , Laura Simonelli , Payam Kaghazchi , Seung-Taek Myung
{"title":"提升锂离子电池的范例:复杂的离子结构在锂过量层状氧化物前所未有的电化学性能","authors":"Jun Ho Yu ,&nbsp;Konstantin Köster ,&nbsp;Natalia Voronina ,&nbsp;Sungkyu Kim ,&nbsp;Hyeon-Ji Shin ,&nbsp;Kyung Sun Kim ,&nbsp;Kyuwook Ihm ,&nbsp;Hyungsub Kim ,&nbsp;Hun-Gi Jung ,&nbsp;Koji Yazawa ,&nbsp;Olivier Guillon ,&nbsp;Pierluigi Gargiani ,&nbsp;Laura Simonelli ,&nbsp;Payam Kaghazchi ,&nbsp;Seung-Taek Myung","doi":"10.1016/j.esci.2025.100376","DOIUrl":null,"url":null,"abstract":"<div><div>In exploring the frontier of high-energy-density cathode materials for lithium-ion batteries, substantial progress has been made by fine-tuning the composition of Ni-rich cathodes tailored for high-capacity operation. Equally promising are Li-rich cathode materials, which leverage the novel mechanism of oxygen-redox chemistry to achieve enhanced capacities. Nonetheless, the practical realization of these capacities remains elusive, falling short of the desired benchmarks. In this work, we pioneer a Mn-based, Co-free, reduced-nickel, high-capacity cathode material: Li<sub>0.75</sub>[Li<sub>0.15</sub>Ni<sub>0.15</sub>Mn<sub>0.7</sub>]O<sub>2</sub> ionic exchanged from Na<sub>0.75</sub>[Li<sub>0.15</sub>Ni<sub>0.15</sub>Mn<sub>0.7</sub>]O<sub>2</sub>. This material is an O2-type layered structure, distinguished by honeycomb ordering within the transition-metal layer, as confirmed by comprehensive neutron and X-ray studies and extensive electrostatic screening. The material's unique structural integrity facilitates the delivery of an exceptional quantity of Li<sup>+</sup> ions <em>via</em> O<sup>2</sup><sup>−</sup>/<span><math><mrow><msup><msub><mi>O</mi><mn>2</mn></msub><mrow><mi>n</mi><mo>−</mo></mrow></msup></mrow></math></span> redox, circumventing oxygen release and phase transition. The de/lithiation process enables the delivery of a substantial reversible capacity of ∼284 ​mAh ​(g-oxide)<sup>−</sup><sup>1</sup> (956 ​Wh ​(kg-oxide)<sup>−</sup><sup>1</sup>). Moreover, this structural and chemical stability contributes to an acceptable cycling stability for 500 ​cycles in full cells, providing improved thermal stability with lower exothermic heat generation and thus highlighting the feasibility of a Mn-based, Co-free, reduced-nickel composition. This investigation marks a pivotal advancement in layered lithium cathode materials.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 4","pages":"Article 100376"},"PeriodicalIF":42.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevating Li-ion battery paradigms: Sophisticated ionic architectures in lithium-excess layered oxides for unprecedented electrochemical performance\",\"authors\":\"Jun Ho Yu ,&nbsp;Konstantin Köster ,&nbsp;Natalia Voronina ,&nbsp;Sungkyu Kim ,&nbsp;Hyeon-Ji Shin ,&nbsp;Kyung Sun Kim ,&nbsp;Kyuwook Ihm ,&nbsp;Hyungsub Kim ,&nbsp;Hun-Gi Jung ,&nbsp;Koji Yazawa ,&nbsp;Olivier Guillon ,&nbsp;Pierluigi Gargiani ,&nbsp;Laura Simonelli ,&nbsp;Payam Kaghazchi ,&nbsp;Seung-Taek Myung\",\"doi\":\"10.1016/j.esci.2025.100376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In exploring the frontier of high-energy-density cathode materials for lithium-ion batteries, substantial progress has been made by fine-tuning the composition of Ni-rich cathodes tailored for high-capacity operation. Equally promising are Li-rich cathode materials, which leverage the novel mechanism of oxygen-redox chemistry to achieve enhanced capacities. Nonetheless, the practical realization of these capacities remains elusive, falling short of the desired benchmarks. In this work, we pioneer a Mn-based, Co-free, reduced-nickel, high-capacity cathode material: Li<sub>0.75</sub>[Li<sub>0.15</sub>Ni<sub>0.15</sub>Mn<sub>0.7</sub>]O<sub>2</sub> ionic exchanged from Na<sub>0.75</sub>[Li<sub>0.15</sub>Ni<sub>0.15</sub>Mn<sub>0.7</sub>]O<sub>2</sub>. This material is an O2-type layered structure, distinguished by honeycomb ordering within the transition-metal layer, as confirmed by comprehensive neutron and X-ray studies and extensive electrostatic screening. The material's unique structural integrity facilitates the delivery of an exceptional quantity of Li<sup>+</sup> ions <em>via</em> O<sup>2</sup><sup>−</sup>/<span><math><mrow><msup><msub><mi>O</mi><mn>2</mn></msub><mrow><mi>n</mi><mo>−</mo></mrow></msup></mrow></math></span> redox, circumventing oxygen release and phase transition. The de/lithiation process enables the delivery of a substantial reversible capacity of ∼284 ​mAh ​(g-oxide)<sup>−</sup><sup>1</sup> (956 ​Wh ​(kg-oxide)<sup>−</sup><sup>1</sup>). Moreover, this structural and chemical stability contributes to an acceptable cycling stability for 500 ​cycles in full cells, providing improved thermal stability with lower exothermic heat generation and thus highlighting the feasibility of a Mn-based, Co-free, reduced-nickel composition. This investigation marks a pivotal advancement in layered lithium cathode materials.</div></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"5 4\",\"pages\":\"Article 100376\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141725000060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141725000060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

在探索锂离子电池高能量密度正极材料的前沿领域,为高容量运行量身定制的富镍阴极成分的微调取得了实质性进展。同样有前途的是富锂阴极材料,它利用氧氧化还原化学的新机制来实现增强的容量。尽管如此,这些能力的实际实现仍然难以实现,没有达到预期的基准。在这项工作中,我们开拓了一种mn基,无co,还原镍,高容量正极材料:由Na0.75[Li0.15Ni0.15Mn0.7]O2交换的Li0.75[Li0.15Ni0.15Mn0.7]O2离子。该材料是一种o2型层状结构,其特征是过渡金属层内的蜂窝状有序,经全面的中子和x射线研究和广泛的静电筛选证实。该材料独特的结构完整性有助于通过O2 - /O2n -氧化还原传递大量Li+离子,绕过氧气释放和相变。去锂化工艺能够提供相当大的可逆容量,约284 mAh (g-oxide)−1 (956 Wh (kg-oxide)−1)。此外,这种结构和化学稳定性有助于在全电池中进行500次循环,提供更好的热稳定性和更低的放热产热,从而突出了mn基,无co,还原镍成分的可行性。这项研究标志着层状锂正极材料的关键进展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Elevating Li-ion battery paradigms: Sophisticated ionic architectures in lithium-excess layered oxides for unprecedented electrochemical performance

Elevating Li-ion battery paradigms: Sophisticated ionic architectures in lithium-excess layered oxides for unprecedented electrochemical performance
In exploring the frontier of high-energy-density cathode materials for lithium-ion batteries, substantial progress has been made by fine-tuning the composition of Ni-rich cathodes tailored for high-capacity operation. Equally promising are Li-rich cathode materials, which leverage the novel mechanism of oxygen-redox chemistry to achieve enhanced capacities. Nonetheless, the practical realization of these capacities remains elusive, falling short of the desired benchmarks. In this work, we pioneer a Mn-based, Co-free, reduced-nickel, high-capacity cathode material: Li0.75[Li0.15Ni0.15Mn0.7]O2 ionic exchanged from Na0.75[Li0.15Ni0.15Mn0.7]O2. This material is an O2-type layered structure, distinguished by honeycomb ordering within the transition-metal layer, as confirmed by comprehensive neutron and X-ray studies and extensive electrostatic screening. The material's unique structural integrity facilitates the delivery of an exceptional quantity of Li+ ions via O2/O2n redox, circumventing oxygen release and phase transition. The de/lithiation process enables the delivery of a substantial reversible capacity of ∼284 ​mAh ​(g-oxide)1 (956 ​Wh ​(kg-oxide)1). Moreover, this structural and chemical stability contributes to an acceptable cycling stability for 500 ​cycles in full cells, providing improved thermal stability with lower exothermic heat generation and thus highlighting the feasibility of a Mn-based, Co-free, reduced-nickel composition. This investigation marks a pivotal advancement in layered lithium cathode materials.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信