Jun Ho Yu , Konstantin Köster , Natalia Voronina , Sungkyu Kim , Hyeon-Ji Shin , Kyung Sun Kim , Kyuwook Ihm , Hyungsub Kim , Hun-Gi Jung , Koji Yazawa , Olivier Guillon , Pierluigi Gargiani , Laura Simonelli , Payam Kaghazchi , Seung-Taek Myung
{"title":"提升锂离子电池的范例:复杂的离子结构在锂过量层状氧化物前所未有的电化学性能","authors":"Jun Ho Yu , Konstantin Köster , Natalia Voronina , Sungkyu Kim , Hyeon-Ji Shin , Kyung Sun Kim , Kyuwook Ihm , Hyungsub Kim , Hun-Gi Jung , Koji Yazawa , Olivier Guillon , Pierluigi Gargiani , Laura Simonelli , Payam Kaghazchi , Seung-Taek Myung","doi":"10.1016/j.esci.2025.100376","DOIUrl":null,"url":null,"abstract":"<div><div>In exploring the frontier of high-energy-density cathode materials for lithium-ion batteries, substantial progress has been made by fine-tuning the composition of Ni-rich cathodes tailored for high-capacity operation. Equally promising are Li-rich cathode materials, which leverage the novel mechanism of oxygen-redox chemistry to achieve enhanced capacities. Nonetheless, the practical realization of these capacities remains elusive, falling short of the desired benchmarks. In this work, we pioneer a Mn-based, Co-free, reduced-nickel, high-capacity cathode material: Li<sub>0.75</sub>[Li<sub>0.15</sub>Ni<sub>0.15</sub>Mn<sub>0.7</sub>]O<sub>2</sub> ionic exchanged from Na<sub>0.75</sub>[Li<sub>0.15</sub>Ni<sub>0.15</sub>Mn<sub>0.7</sub>]O<sub>2</sub>. This material is an O2-type layered structure, distinguished by honeycomb ordering within the transition-metal layer, as confirmed by comprehensive neutron and X-ray studies and extensive electrostatic screening. The material's unique structural integrity facilitates the delivery of an exceptional quantity of Li<sup>+</sup> ions <em>via</em> O<sup>2</sup><sup>−</sup>/<span><math><mrow><msup><msub><mi>O</mi><mn>2</mn></msub><mrow><mi>n</mi><mo>−</mo></mrow></msup></mrow></math></span> redox, circumventing oxygen release and phase transition. The de/lithiation process enables the delivery of a substantial reversible capacity of ∼284 mAh (g-oxide)<sup>−</sup><sup>1</sup> (956 Wh (kg-oxide)<sup>−</sup><sup>1</sup>). Moreover, this structural and chemical stability contributes to an acceptable cycling stability for 500 cycles in full cells, providing improved thermal stability with lower exothermic heat generation and thus highlighting the feasibility of a Mn-based, Co-free, reduced-nickel composition. This investigation marks a pivotal advancement in layered lithium cathode materials.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 4","pages":"Article 100376"},"PeriodicalIF":42.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Elevating Li-ion battery paradigms: Sophisticated ionic architectures in lithium-excess layered oxides for unprecedented electrochemical performance\",\"authors\":\"Jun Ho Yu , Konstantin Köster , Natalia Voronina , Sungkyu Kim , Hyeon-Ji Shin , Kyung Sun Kim , Kyuwook Ihm , Hyungsub Kim , Hun-Gi Jung , Koji Yazawa , Olivier Guillon , Pierluigi Gargiani , Laura Simonelli , Payam Kaghazchi , Seung-Taek Myung\",\"doi\":\"10.1016/j.esci.2025.100376\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>In exploring the frontier of high-energy-density cathode materials for lithium-ion batteries, substantial progress has been made by fine-tuning the composition of Ni-rich cathodes tailored for high-capacity operation. Equally promising are Li-rich cathode materials, which leverage the novel mechanism of oxygen-redox chemistry to achieve enhanced capacities. Nonetheless, the practical realization of these capacities remains elusive, falling short of the desired benchmarks. In this work, we pioneer a Mn-based, Co-free, reduced-nickel, high-capacity cathode material: Li<sub>0.75</sub>[Li<sub>0.15</sub>Ni<sub>0.15</sub>Mn<sub>0.7</sub>]O<sub>2</sub> ionic exchanged from Na<sub>0.75</sub>[Li<sub>0.15</sub>Ni<sub>0.15</sub>Mn<sub>0.7</sub>]O<sub>2</sub>. This material is an O2-type layered structure, distinguished by honeycomb ordering within the transition-metal layer, as confirmed by comprehensive neutron and X-ray studies and extensive electrostatic screening. The material's unique structural integrity facilitates the delivery of an exceptional quantity of Li<sup>+</sup> ions <em>via</em> O<sup>2</sup><sup>−</sup>/<span><math><mrow><msup><msub><mi>O</mi><mn>2</mn></msub><mrow><mi>n</mi><mo>−</mo></mrow></msup></mrow></math></span> redox, circumventing oxygen release and phase transition. The de/lithiation process enables the delivery of a substantial reversible capacity of ∼284 mAh (g-oxide)<sup>−</sup><sup>1</sup> (956 Wh (kg-oxide)<sup>−</sup><sup>1</sup>). Moreover, this structural and chemical stability contributes to an acceptable cycling stability for 500 cycles in full cells, providing improved thermal stability with lower exothermic heat generation and thus highlighting the feasibility of a Mn-based, Co-free, reduced-nickel composition. This investigation marks a pivotal advancement in layered lithium cathode materials.</div></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"5 4\",\"pages\":\"Article 100376\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141725000060\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141725000060","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0
摘要
在探索锂离子电池高能量密度正极材料的前沿领域,为高容量运行量身定制的富镍阴极成分的微调取得了实质性进展。同样有前途的是富锂阴极材料,它利用氧氧化还原化学的新机制来实现增强的容量。尽管如此,这些能力的实际实现仍然难以实现,没有达到预期的基准。在这项工作中,我们开拓了一种mn基,无co,还原镍,高容量正极材料:由Na0.75[Li0.15Ni0.15Mn0.7]O2交换的Li0.75[Li0.15Ni0.15Mn0.7]O2离子。该材料是一种o2型层状结构,其特征是过渡金属层内的蜂窝状有序,经全面的中子和x射线研究和广泛的静电筛选证实。该材料独特的结构完整性有助于通过O2 - /O2n -氧化还原传递大量Li+离子,绕过氧气释放和相变。去锂化工艺能够提供相当大的可逆容量,约284 mAh (g-oxide)−1 (956 Wh (kg-oxide)−1)。此外,这种结构和化学稳定性有助于在全电池中进行500次循环,提供更好的热稳定性和更低的放热产热,从而突出了mn基,无co,还原镍成分的可行性。这项研究标志着层状锂正极材料的关键进展。
Elevating Li-ion battery paradigms: Sophisticated ionic architectures in lithium-excess layered oxides for unprecedented electrochemical performance
In exploring the frontier of high-energy-density cathode materials for lithium-ion batteries, substantial progress has been made by fine-tuning the composition of Ni-rich cathodes tailored for high-capacity operation. Equally promising are Li-rich cathode materials, which leverage the novel mechanism of oxygen-redox chemistry to achieve enhanced capacities. Nonetheless, the practical realization of these capacities remains elusive, falling short of the desired benchmarks. In this work, we pioneer a Mn-based, Co-free, reduced-nickel, high-capacity cathode material: Li0.75[Li0.15Ni0.15Mn0.7]O2 ionic exchanged from Na0.75[Li0.15Ni0.15Mn0.7]O2. This material is an O2-type layered structure, distinguished by honeycomb ordering within the transition-metal layer, as confirmed by comprehensive neutron and X-ray studies and extensive electrostatic screening. The material's unique structural integrity facilitates the delivery of an exceptional quantity of Li+ ions via O2−/ redox, circumventing oxygen release and phase transition. The de/lithiation process enables the delivery of a substantial reversible capacity of ∼284 mAh (g-oxide)−1 (956 Wh (kg-oxide)−1). Moreover, this structural and chemical stability contributes to an acceptable cycling stability for 500 cycles in full cells, providing improved thermal stability with lower exothermic heat generation and thus highlighting the feasibility of a Mn-based, Co-free, reduced-nickel composition. This investigation marks a pivotal advancement in layered lithium cathode materials.