锰基电催化剂的发展:从以锰为中心的八面体实体到体形的演变

IF 42.9 Q1 ELECTROCHEMISTRY
Huan Li , Jinchao Xu , Liyuan Yang , Wanying Wang , Bin Shao , Fangyi Cheng , Chunning Zhao , Weichao Wang
{"title":"锰基电催化剂的发展:从以锰为中心的八面体实体到体形的演变","authors":"Huan Li ,&nbsp;Jinchao Xu ,&nbsp;Liyuan Yang ,&nbsp;Wanying Wang ,&nbsp;Bin Shao ,&nbsp;Fangyi Cheng ,&nbsp;Chunning Zhao ,&nbsp;Weichao Wang","doi":"10.1016/j.esci.2024.100368","DOIUrl":null,"url":null,"abstract":"<div><div>Developing transition metal compound (TMC) catalysts is complicated by the intricate relationship between their crystal and electronic structures and their catalytic performance. To address this challenge, we propose the “from active unit to catalyst” (FAUC) strategy starting with optimizing the physical property of a Mn-centered [MnO<sub>6</sub>] entity to ensure its catalytic performance. These entities are then arranged to reveal how their assembly influences the electronic structures. Notably, a two-dimensional (2D) entity-formed lattice shows a promising low theoretical overpotential (0.08 ​V) for oxygen reduction reaction due to the optimal occupied <span><math><mrow><msub><mi>d</mi><msup><mi>z</mi><mn>2</mn></msup></msub></mrow></math></span> orbital position. According to the catalytic requirements of an individual entity and its stacking modes, we further developed a search algorithm to identify three-dimensional (3D) structures from 154,718 candidates, pinpointing CaMnO<sub>3</sub> as the most effective one among the screened candidates. This FAUC approach provides a comprehensive framework for designing catalysts from basic units to complex assemblies.</div></div>","PeriodicalId":100489,"journal":{"name":"eScience","volume":"5 4","pages":"Article 100368"},"PeriodicalIF":42.9000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Advancing Mn-based electrocatalysts: Evolving from Mn-centered octahedral entities to bulk forms\",\"authors\":\"Huan Li ,&nbsp;Jinchao Xu ,&nbsp;Liyuan Yang ,&nbsp;Wanying Wang ,&nbsp;Bin Shao ,&nbsp;Fangyi Cheng ,&nbsp;Chunning Zhao ,&nbsp;Weichao Wang\",\"doi\":\"10.1016/j.esci.2024.100368\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Developing transition metal compound (TMC) catalysts is complicated by the intricate relationship between their crystal and electronic structures and their catalytic performance. To address this challenge, we propose the “from active unit to catalyst” (FAUC) strategy starting with optimizing the physical property of a Mn-centered [MnO<sub>6</sub>] entity to ensure its catalytic performance. These entities are then arranged to reveal how their assembly influences the electronic structures. Notably, a two-dimensional (2D) entity-formed lattice shows a promising low theoretical overpotential (0.08 ​V) for oxygen reduction reaction due to the optimal occupied <span><math><mrow><msub><mi>d</mi><msup><mi>z</mi><mn>2</mn></msup></msub></mrow></math></span> orbital position. According to the catalytic requirements of an individual entity and its stacking modes, we further developed a search algorithm to identify three-dimensional (3D) structures from 154,718 candidates, pinpointing CaMnO<sub>3</sub> as the most effective one among the screened candidates. This FAUC approach provides a comprehensive framework for designing catalysts from basic units to complex assemblies.</div></div>\",\"PeriodicalId\":100489,\"journal\":{\"name\":\"eScience\",\"volume\":\"5 4\",\"pages\":\"Article 100368\"},\"PeriodicalIF\":42.9000,\"publicationDate\":\"2025-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"eScience\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2667141724001678\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ELECTROCHEMISTRY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"eScience","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2667141724001678","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ELECTROCHEMISTRY","Score":null,"Total":0}
引用次数: 0

摘要

过渡金属化合物(TMC)催化剂的晶体结构和电子结构与催化性能之间的复杂关系,使其开发变得十分复杂。为了应对这一挑战,我们提出了“从活性单元到催化剂”(FAUC)策略,从优化mn中心[MnO6]实体的物理性质开始,以确保其催化性能。然后对这些实体进行排列,以揭示它们的组装如何影响电子结构。值得注意的是,二维(2D)实体形成的晶格显示出较低的理论过电位(0.08 V),这是由于最佳占据的dz2轨道位置。根据单个实体的催化要求及其堆叠模式,我们进一步开发了一种搜索算法,从154,718个候选物中识别三维(3D)结构,并在筛选的候选物中确定CaMnO3为最有效的候选物。这种fac方法为设计从基本单元到复杂组件的催化剂提供了一个全面的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Advancing Mn-based electrocatalysts: Evolving from Mn-centered octahedral entities to bulk forms

Advancing Mn-based electrocatalysts: Evolving from Mn-centered octahedral entities to bulk forms
Developing transition metal compound (TMC) catalysts is complicated by the intricate relationship between their crystal and electronic structures and their catalytic performance. To address this challenge, we propose the “from active unit to catalyst” (FAUC) strategy starting with optimizing the physical property of a Mn-centered [MnO6] entity to ensure its catalytic performance. These entities are then arranged to reveal how their assembly influences the electronic structures. Notably, a two-dimensional (2D) entity-formed lattice shows a promising low theoretical overpotential (0.08 ​V) for oxygen reduction reaction due to the optimal occupied dz2 orbital position. According to the catalytic requirements of an individual entity and its stacking modes, we further developed a search algorithm to identify three-dimensional (3D) structures from 154,718 candidates, pinpointing CaMnO3 as the most effective one among the screened candidates. This FAUC approach provides a comprehensive framework for designing catalysts from basic units to complex assemblies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
33.70
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信