Korteweg-de Vries方程的Benjamin-Bona-Mahony正则化

IF 2.4 2区 数学 Q1 MATHEMATICS
Younghun Hong , Junyeong Jang , Changhun Yang
{"title":"Korteweg-de Vries方程的Benjamin-Bona-Mahony正则化","authors":"Younghun Hong ,&nbsp;Junyeong Jang ,&nbsp;Changhun Yang","doi":"10.1016/j.jde.2025.113626","DOIUrl":null,"url":null,"abstract":"<div><div>The Benjamin-Bona-Mahony equation (BBM) is introduced as a regularization of the Korteweg-de Vries equation (KdV) for long water waves [T.B. Benjamin, J.L. Bona, and J.J. Mahony, Philos. Trans. Roy. Soc. London Ser. A 272(1220) (1972), pp. 47–78]. In this paper, we establish the convergence from the BBM to the KdV for energy class solutions. As a consequence, employing the conservation laws, we extend the known temporal interval of validity for the BBM regularization.</div></div>","PeriodicalId":15623,"journal":{"name":"Journal of Differential Equations","volume":"447 ","pages":"Article 113626"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"On the Benjamin-Bona-Mahony regularization of the Korteweg-de Vries equation\",\"authors\":\"Younghun Hong ,&nbsp;Junyeong Jang ,&nbsp;Changhun Yang\",\"doi\":\"10.1016/j.jde.2025.113626\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The Benjamin-Bona-Mahony equation (BBM) is introduced as a regularization of the Korteweg-de Vries equation (KdV) for long water waves [T.B. Benjamin, J.L. Bona, and J.J. Mahony, Philos. Trans. Roy. Soc. London Ser. A 272(1220) (1972), pp. 47–78]. In this paper, we establish the convergence from the BBM to the KdV for energy class solutions. As a consequence, employing the conservation laws, we extend the known temporal interval of validity for the BBM regularization.</div></div>\",\"PeriodicalId\":15623,\"journal\":{\"name\":\"Journal of Differential Equations\",\"volume\":\"447 \",\"pages\":\"Article 113626\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Differential Equations\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0022039625006539\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Differential Equations","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0022039625006539","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

引入了Benjamin-Bona-Mahony方程(BBM)作为Korteweg-de Vries方程(KdV)的正则化形式本杰明,J.L.博纳,和J.J.马奥尼,菲洛斯。反式。罗伊。Soc。伦敦爵士。A 272(1220)(1972),第47-78页。本文建立了能量类解从BBM到KdV的收敛性。因此,利用守恒定律,我们扩展了已知的BBM正则化有效的时间区间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On the Benjamin-Bona-Mahony regularization of the Korteweg-de Vries equation
The Benjamin-Bona-Mahony equation (BBM) is introduced as a regularization of the Korteweg-de Vries equation (KdV) for long water waves [T.B. Benjamin, J.L. Bona, and J.J. Mahony, Philos. Trans. Roy. Soc. London Ser. A 272(1220) (1972), pp. 47–78]. In this paper, we establish the convergence from the BBM to the KdV for energy class solutions. As a consequence, employing the conservation laws, we extend the known temporal interval of validity for the BBM regularization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
4.40
自引率
8.30%
发文量
543
审稿时长
9 months
期刊介绍: The Journal of Differential Equations is concerned with the theory and the application of differential equations. The articles published are addressed not only to mathematicians but also to those engineers, physicists, and other scientists for whom differential equations are valuable research tools. Research Areas Include: • Mathematical control theory • Ordinary differential equations • Partial differential equations • Stochastic differential equations • Topological dynamics • Related topics
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信