高温应用低密度Ta-Nb-W-V-Zr-Ti-Mo难熔高熵合金的机器学习驱动设计

Himanshu Sharma , Reliance Jain , K. Raja Rao
{"title":"高温应用低密度Ta-Nb-W-V-Zr-Ti-Mo难熔高熵合金的机器学习驱动设计","authors":"Himanshu Sharma ,&nbsp;Reliance Jain ,&nbsp;K. Raja Rao","doi":"10.1016/j.jalmes.2025.100199","DOIUrl":null,"url":null,"abstract":"<div><div>High-entropy alloys (HEAs) are gaining significant attention due to their unique microstructures and outstanding properties. However, traditional design approaches are time-intensive and labor-intensive process, making machine learning (ML) a promising tool for accelerating discovery. In this work, we explored the prediction of density for lightweight refractory high-entropy alloys (LRHEAs), incorporating alloying elements and liquidous and solidus temperature into the analysis. To evaluate the machine learning models, we used numerous performance matrices, together with the coefficient of determination (R<sup>2</sup>), mean absolute error (MAE), and root mean square error (RMSE). After selecting the optimal model, we successfully predicted the density of new alloys. The XGB model proved to be the most effective, yielding impressive performance metrics (R<sup>2</sup> = 0.995, MAE = 0.6 %, RMSE = 0.6 %).</div></div>","PeriodicalId":100753,"journal":{"name":"Journal of Alloys and Metallurgical Systems","volume":"11 ","pages":"Article 100199"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine learning-driven design of low-density Ta-Nb-W-V-Zr-Ti-Mo refractory high-entropy alloys for high-temperature applications\",\"authors\":\"Himanshu Sharma ,&nbsp;Reliance Jain ,&nbsp;K. Raja Rao\",\"doi\":\"10.1016/j.jalmes.2025.100199\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>High-entropy alloys (HEAs) are gaining significant attention due to their unique microstructures and outstanding properties. However, traditional design approaches are time-intensive and labor-intensive process, making machine learning (ML) a promising tool for accelerating discovery. In this work, we explored the prediction of density for lightweight refractory high-entropy alloys (LRHEAs), incorporating alloying elements and liquidous and solidus temperature into the analysis. To evaluate the machine learning models, we used numerous performance matrices, together with the coefficient of determination (R<sup>2</sup>), mean absolute error (MAE), and root mean square error (RMSE). After selecting the optimal model, we successfully predicted the density of new alloys. The XGB model proved to be the most effective, yielding impressive performance metrics (R<sup>2</sup> = 0.995, MAE = 0.6 %, RMSE = 0.6 %).</div></div>\",\"PeriodicalId\":100753,\"journal\":{\"name\":\"Journal of Alloys and Metallurgical Systems\",\"volume\":\"11 \",\"pages\":\"Article 100199\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Alloys and Metallurgical Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2949917825000495\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Alloys and Metallurgical Systems","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2949917825000495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

高熵合金以其独特的显微组织和优异的性能而备受关注。然而,传统的设计方法是时间密集型和劳动密集型的过程,这使得机器学习(ML)成为加速发现的有前途的工具。在这项工作中,我们探索了轻质耐火高熵合金(LRHEAs)的密度预测,将合金元素和液相和固相温度纳入分析。为了评估机器学习模型,我们使用了许多性能矩阵,包括决定系数(R2)、平均绝对误差(MAE)和均方根误差(RMSE)。在选择了最优模型后,成功地预测了新合金的密度。XGB模型被证明是最有效的,产生了令人印象深刻的性能指标(R2 = 0.995,MAE = 0.6 %,RMSE = 0.6 %)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine learning-driven design of low-density Ta-Nb-W-V-Zr-Ti-Mo refractory high-entropy alloys for high-temperature applications
High-entropy alloys (HEAs) are gaining significant attention due to their unique microstructures and outstanding properties. However, traditional design approaches are time-intensive and labor-intensive process, making machine learning (ML) a promising tool for accelerating discovery. In this work, we explored the prediction of density for lightweight refractory high-entropy alloys (LRHEAs), incorporating alloying elements and liquidous and solidus temperature into the analysis. To evaluate the machine learning models, we used numerous performance matrices, together with the coefficient of determination (R2), mean absolute error (MAE), and root mean square error (RMSE). After selecting the optimal model, we successfully predicted the density of new alloys. The XGB model proved to be the most effective, yielding impressive performance metrics (R2 = 0.995, MAE = 0.6 %, RMSE = 0.6 %).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
0.50
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信