Nicholas A. Corbin , Arijit Sarkar , Jacquelien M.A. Scherpen , Boris Kramer
{"title":"控制仿射多项式系统输入-法向/输出-对角平衡实现的可扩展计算","authors":"Nicholas A. Corbin , Arijit Sarkar , Jacquelien M.A. Scherpen , Boris Kramer","doi":"10.1016/j.sysconle.2025.106178","DOIUrl":null,"url":null,"abstract":"<div><div>We present a scalable tensor-based approach to computing input-normal/output-diagonal nonlinear balancing transformations for control-affine systems with polynomial nonlinearities. This transformation is necessary to determine the states that can be truncated when forming a reduced-order model. Given a polynomial representation for the controllability and observability energy functions, we derive the explicit equations to compute a polynomial transformation to induce input-normal/output-diagonal structure in the energy functions in the transformed coordinates. The transformation is computed degree-by-degree, similar to previous Taylor-series approaches in the literature. However, unlike previous works, we provide a detailed analysis of the transformation equations in Kronecker product form to enable a more scalable implementation. We derive the explicit algebraic structure for the equations, present rigorous analyses for the solvability and algorithmic complexity of those equations, and provide general purpose open-source software implementations for the proposed algorithms to stimulate broader use of nonlinear balanced truncation model reduction. We demonstrate that with our efficient implementation, computing the nonlinear transformation is approximately as expensive as computing the energy functions using state-of-the-art methods.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"204 ","pages":"Article 106178"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable computation of input-normal/output-diagonal balanced realization for control-affine polynomial systems\",\"authors\":\"Nicholas A. Corbin , Arijit Sarkar , Jacquelien M.A. Scherpen , Boris Kramer\",\"doi\":\"10.1016/j.sysconle.2025.106178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a scalable tensor-based approach to computing input-normal/output-diagonal nonlinear balancing transformations for control-affine systems with polynomial nonlinearities. This transformation is necessary to determine the states that can be truncated when forming a reduced-order model. Given a polynomial representation for the controllability and observability energy functions, we derive the explicit equations to compute a polynomial transformation to induce input-normal/output-diagonal structure in the energy functions in the transformed coordinates. The transformation is computed degree-by-degree, similar to previous Taylor-series approaches in the literature. However, unlike previous works, we provide a detailed analysis of the transformation equations in Kronecker product form to enable a more scalable implementation. We derive the explicit algebraic structure for the equations, present rigorous analyses for the solvability and algorithmic complexity of those equations, and provide general purpose open-source software implementations for the proposed algorithms to stimulate broader use of nonlinear balanced truncation model reduction. We demonstrate that with our efficient implementation, computing the nonlinear transformation is approximately as expensive as computing the energy functions using state-of-the-art methods.</div></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"204 \",\"pages\":\"Article 106178\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691125001604\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125001604","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
Scalable computation of input-normal/output-diagonal balanced realization for control-affine polynomial systems
We present a scalable tensor-based approach to computing input-normal/output-diagonal nonlinear balancing transformations for control-affine systems with polynomial nonlinearities. This transformation is necessary to determine the states that can be truncated when forming a reduced-order model. Given a polynomial representation for the controllability and observability energy functions, we derive the explicit equations to compute a polynomial transformation to induce input-normal/output-diagonal structure in the energy functions in the transformed coordinates. The transformation is computed degree-by-degree, similar to previous Taylor-series approaches in the literature. However, unlike previous works, we provide a detailed analysis of the transformation equations in Kronecker product form to enable a more scalable implementation. We derive the explicit algebraic structure for the equations, present rigorous analyses for the solvability and algorithmic complexity of those equations, and provide general purpose open-source software implementations for the proposed algorithms to stimulate broader use of nonlinear balanced truncation model reduction. We demonstrate that with our efficient implementation, computing the nonlinear transformation is approximately as expensive as computing the energy functions using state-of-the-art methods.
期刊介绍:
Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.