控制仿射多项式系统输入-法向/输出-对角平衡实现的可扩展计算

IF 2.1 3区 计算机科学 Q3 AUTOMATION & CONTROL SYSTEMS
Nicholas A. Corbin , Arijit Sarkar , Jacquelien M.A. Scherpen , Boris Kramer
{"title":"控制仿射多项式系统输入-法向/输出-对角平衡实现的可扩展计算","authors":"Nicholas A. Corbin ,&nbsp;Arijit Sarkar ,&nbsp;Jacquelien M.A. Scherpen ,&nbsp;Boris Kramer","doi":"10.1016/j.sysconle.2025.106178","DOIUrl":null,"url":null,"abstract":"<div><div>We present a scalable tensor-based approach to computing input-normal/output-diagonal nonlinear balancing transformations for control-affine systems with polynomial nonlinearities. This transformation is necessary to determine the states that can be truncated when forming a reduced-order model. Given a polynomial representation for the controllability and observability energy functions, we derive the explicit equations to compute a polynomial transformation to induce input-normal/output-diagonal structure in the energy functions in the transformed coordinates. The transformation is computed degree-by-degree, similar to previous Taylor-series approaches in the literature. However, unlike previous works, we provide a detailed analysis of the transformation equations in Kronecker product form to enable a more scalable implementation. We derive the explicit algebraic structure for the equations, present rigorous analyses for the solvability and algorithmic complexity of those equations, and provide general purpose open-source software implementations for the proposed algorithms to stimulate broader use of nonlinear balanced truncation model reduction. We demonstrate that with our efficient implementation, computing the nonlinear transformation is approximately as expensive as computing the energy functions using state-of-the-art methods.</div></div>","PeriodicalId":49450,"journal":{"name":"Systems & Control Letters","volume":"204 ","pages":"Article 106178"},"PeriodicalIF":2.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Scalable computation of input-normal/output-diagonal balanced realization for control-affine polynomial systems\",\"authors\":\"Nicholas A. Corbin ,&nbsp;Arijit Sarkar ,&nbsp;Jacquelien M.A. Scherpen ,&nbsp;Boris Kramer\",\"doi\":\"10.1016/j.sysconle.2025.106178\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We present a scalable tensor-based approach to computing input-normal/output-diagonal nonlinear balancing transformations for control-affine systems with polynomial nonlinearities. This transformation is necessary to determine the states that can be truncated when forming a reduced-order model. Given a polynomial representation for the controllability and observability energy functions, we derive the explicit equations to compute a polynomial transformation to induce input-normal/output-diagonal structure in the energy functions in the transformed coordinates. The transformation is computed degree-by-degree, similar to previous Taylor-series approaches in the literature. However, unlike previous works, we provide a detailed analysis of the transformation equations in Kronecker product form to enable a more scalable implementation. We derive the explicit algebraic structure for the equations, present rigorous analyses for the solvability and algorithmic complexity of those equations, and provide general purpose open-source software implementations for the proposed algorithms to stimulate broader use of nonlinear balanced truncation model reduction. We demonstrate that with our efficient implementation, computing the nonlinear transformation is approximately as expensive as computing the energy functions using state-of-the-art methods.</div></div>\",\"PeriodicalId\":49450,\"journal\":{\"name\":\"Systems & Control Letters\",\"volume\":\"204 \",\"pages\":\"Article 106178\"},\"PeriodicalIF\":2.1000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Systems & Control Letters\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0167691125001604\",\"RegionNum\":3,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"AUTOMATION & CONTROL SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Systems & Control Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167691125001604","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了一种基于可扩展张量的方法来计算具有多项式非线性的控制仿射系统的输入-正态/输出-对角非线性平衡变换。这种转换对于确定在形成降阶模型时可以被截断的状态是必要的。给出了可控性和可观测性能量函数的多项式表示形式,导出了计算多项式变换的显式方程,以在变换坐标中导出能量函数的输入-法向/输出-对角结构。变换是逐度计算的,类似于文献中以前的泰勒级数方法。然而,与以前的工作不同,我们提供了Kronecker积形式的转换方程的详细分析,以实现更可扩展的实现。我们推导了这些方程的显式代数结构,对这些方程的可解性和算法复杂性进行了严格的分析,并为所提出的算法提供了通用的开源软件实现,以促进非线性平衡截断模型约简的广泛使用。我们证明,通过我们的高效实现,计算非线性变换的成本大约与使用最先进的方法计算能量函数一样高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Scalable computation of input-normal/output-diagonal balanced realization for control-affine polynomial systems
We present a scalable tensor-based approach to computing input-normal/output-diagonal nonlinear balancing transformations for control-affine systems with polynomial nonlinearities. This transformation is necessary to determine the states that can be truncated when forming a reduced-order model. Given a polynomial representation for the controllability and observability energy functions, we derive the explicit equations to compute a polynomial transformation to induce input-normal/output-diagonal structure in the energy functions in the transformed coordinates. The transformation is computed degree-by-degree, similar to previous Taylor-series approaches in the literature. However, unlike previous works, we provide a detailed analysis of the transformation equations in Kronecker product form to enable a more scalable implementation. We derive the explicit algebraic structure for the equations, present rigorous analyses for the solvability and algorithmic complexity of those equations, and provide general purpose open-source software implementations for the proposed algorithms to stimulate broader use of nonlinear balanced truncation model reduction. We demonstrate that with our efficient implementation, computing the nonlinear transformation is approximately as expensive as computing the energy functions using state-of-the-art methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Systems & Control Letters
Systems & Control Letters 工程技术-运筹学与管理科学
CiteScore
4.60
自引率
3.80%
发文量
144
审稿时长
6 months
期刊介绍: Founded in 1981 by two of the pre-eminent control theorists, Roger Brockett and Jan Willems, Systems & Control Letters is one of the leading journals in the field of control theory. The aim of the journal is to allow dissemination of relatively concise but highly original contributions whose high initial quality enables a relatively rapid review process. All aspects of the fields of systems and control are covered, especially mathematically-oriented and theoretical papers that have a clear relevance to engineering, physical and biological sciences, and even economics. Application-oriented papers with sophisticated and rigorous mathematical elements are also welcome.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信