{"title":"具有团数和周长有界的图中边的数目","authors":"Chunyang Dou , Bo Ning , Xing Peng","doi":"10.1016/j.aam.2025.102936","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>H</mi></math></span> be a family of graphs. The Turán number <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is the maximum possible number of edges in an <em>n</em>-vertex graph which does not contain any member of <span><math><mi>H</mi></math></span> as a subgraph. As a common generalization of Turán's theorem and Erdős-Gallai theorem on the Turán number of matchings, Alon and Frankl determined <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for <span><math><mi>H</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is a matching of size <em>k</em>. Replacing <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> by <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, Katona and Xiao obtained the Turán number of <span><math><mi>H</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></math></span> for <span><math><mi>r</mi><mo>≤</mo><mo>⌊</mo><mi>k</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> and sufficiently large <em>n</em>. In addition, they proposed a conjecture for the case where <span><math><mi>r</mi><mo>≥</mo><mo>⌊</mo><mi>k</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span> and <em>n</em> is sufficiently large. Motivated by the fact that the result for <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> can be deduced from the one for <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span>, we investigate the Turán number of <span><math><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>}</mo></math></span> in this paper, where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub></math></span> denotes the set of cycles of length at least <em>k</em>. In other words, we aim to determine the maximum number of edges in graphs with clique number at most <span><math><mi>r</mi><mo>−</mo><mn>1</mn></math></span> and circumference at most <span><math><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. For <span><math><mi>H</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>}</mo></math></span>, we are able to show the value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mo>⌊</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>2</mn></math></span> and all <em>n</em>. As an application of this result, we confirm Katona and Xiao's conjecture in a stronger form. For <span><math><mi>r</mi><mo>≤</mo><mo>⌊</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span>, we manage to show the value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for sufficiently large <em>n</em>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"171 ","pages":"Article 102936"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The number of edges in graphs with bounded clique number and circumference\",\"authors\":\"Chunyang Dou , Bo Ning , Xing Peng\",\"doi\":\"10.1016/j.aam.2025.102936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>H</mi></math></span> be a family of graphs. The Turán number <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is the maximum possible number of edges in an <em>n</em>-vertex graph which does not contain any member of <span><math><mi>H</mi></math></span> as a subgraph. As a common generalization of Turán's theorem and Erdős-Gallai theorem on the Turán number of matchings, Alon and Frankl determined <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for <span><math><mi>H</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is a matching of size <em>k</em>. Replacing <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> by <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, Katona and Xiao obtained the Turán number of <span><math><mi>H</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></math></span> for <span><math><mi>r</mi><mo>≤</mo><mo>⌊</mo><mi>k</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> and sufficiently large <em>n</em>. In addition, they proposed a conjecture for the case where <span><math><mi>r</mi><mo>≥</mo><mo>⌊</mo><mi>k</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span> and <em>n</em> is sufficiently large. Motivated by the fact that the result for <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> can be deduced from the one for <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span>, we investigate the Turán number of <span><math><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>}</mo></math></span> in this paper, where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub></math></span> denotes the set of cycles of length at least <em>k</em>. In other words, we aim to determine the maximum number of edges in graphs with clique number at most <span><math><mi>r</mi><mo>−</mo><mn>1</mn></math></span> and circumference at most <span><math><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. For <span><math><mi>H</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>}</mo></math></span>, we are able to show the value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mo>⌊</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>2</mn></math></span> and all <em>n</em>. As an application of this result, we confirm Katona and Xiao's conjecture in a stronger form. For <span><math><mi>r</mi><mo>≤</mo><mo>⌊</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span>, we manage to show the value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for sufficiently large <em>n</em>.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"171 \",\"pages\":\"Article 102936\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825000983\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000983","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
The number of edges in graphs with bounded clique number and circumference
Let be a family of graphs. The Turán number is the maximum possible number of edges in an n-vertex graph which does not contain any member of as a subgraph. As a common generalization of Turán's theorem and Erdős-Gallai theorem on the Turán number of matchings, Alon and Frankl determined for , where is a matching of size k. Replacing by , Katona and Xiao obtained the Turán number of for and sufficiently large n. In addition, they proposed a conjecture for the case where and n is sufficiently large. Motivated by the fact that the result for can be deduced from the one for , we investigate the Turán number of in this paper, where denotes the set of cycles of length at least k. In other words, we aim to determine the maximum number of edges in graphs with clique number at most and circumference at most . For , we are able to show the value of for and all n. As an application of this result, we confirm Katona and Xiao's conjecture in a stronger form. For , we manage to show the value of for sufficiently large n.
期刊介绍:
Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas.
Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.