具有团数和周长有界的图中边的数目

IF 1.3 3区 数学 Q3 MATHEMATICS, APPLIED
Chunyang Dou , Bo Ning , Xing Peng
{"title":"具有团数和周长有界的图中边的数目","authors":"Chunyang Dou ,&nbsp;Bo Ning ,&nbsp;Xing Peng","doi":"10.1016/j.aam.2025.102936","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>H</mi></math></span> be a family of graphs. The Turán number <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is the maximum possible number of edges in an <em>n</em>-vertex graph which does not contain any member of <span><math><mi>H</mi></math></span> as a subgraph. As a common generalization of Turán's theorem and Erdős-Gallai theorem on the Turán number of matchings, Alon and Frankl determined <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for <span><math><mi>H</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is a matching of size <em>k</em>. Replacing <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> by <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, Katona and Xiao obtained the Turán number of <span><math><mi>H</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></math></span> for <span><math><mi>r</mi><mo>≤</mo><mo>⌊</mo><mi>k</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> and sufficiently large <em>n</em>. In addition, they proposed a conjecture for the case where <span><math><mi>r</mi><mo>≥</mo><mo>⌊</mo><mi>k</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span> and <em>n</em> is sufficiently large. Motivated by the fact that the result for <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> can be deduced from the one for <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span>, we investigate the Turán number of <span><math><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>}</mo></math></span> in this paper, where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub></math></span> denotes the set of cycles of length at least <em>k</em>. In other words, we aim to determine the maximum number of edges in graphs with clique number at most <span><math><mi>r</mi><mo>−</mo><mn>1</mn></math></span> and circumference at most <span><math><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. For <span><math><mi>H</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>}</mo></math></span>, we are able to show the value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mo>⌊</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>2</mn></math></span> and all <em>n</em>. As an application of this result, we confirm Katona and Xiao's conjecture in a stronger form. For <span><math><mi>r</mi><mo>≤</mo><mo>⌊</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span>, we manage to show the value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for sufficiently large <em>n</em>.</div></div>","PeriodicalId":50877,"journal":{"name":"Advances in Applied Mathematics","volume":"171 ","pages":"Article 102936"},"PeriodicalIF":1.3000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The number of edges in graphs with bounded clique number and circumference\",\"authors\":\"Chunyang Dou ,&nbsp;Bo Ning ,&nbsp;Xing Peng\",\"doi\":\"10.1016/j.aam.2025.102936\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Let <span><math><mi>H</mi></math></span> be a family of graphs. The Turán number <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> is the maximum possible number of edges in an <em>n</em>-vertex graph which does not contain any member of <span><math><mi>H</mi></math></span> as a subgraph. As a common generalization of Turán's theorem and Erdős-Gallai theorem on the Turán number of matchings, Alon and Frankl determined <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for <span><math><mi>H</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></math></span>, where <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> is a matching of size <em>k</em>. Replacing <span><math><msub><mrow><mi>M</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> by <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span>, Katona and Xiao obtained the Turán number of <span><math><mi>H</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>}</mo></math></span> for <span><math><mi>r</mi><mo>≤</mo><mo>⌊</mo><mi>k</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></math></span> and sufficiently large <em>n</em>. In addition, they proposed a conjecture for the case where <span><math><mi>r</mi><mo>≥</mo><mo>⌊</mo><mi>k</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span> and <em>n</em> is sufficiently large. Motivated by the fact that the result for <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>)</mo></math></span> can be deduced from the one for <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>)</mo></math></span>, we investigate the Turán number of <span><math><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>}</mo></math></span> in this paper, where <span><math><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub></math></span> denotes the set of cycles of length at least <em>k</em>. In other words, we aim to determine the maximum number of edges in graphs with clique number at most <span><math><mi>r</mi><mo>−</mo><mn>1</mn></math></span> and circumference at most <span><math><mi>k</mi><mo>−</mo><mn>1</mn></math></span>. For <span><math><mi>H</mi><mo>=</mo><mo>{</mo><msub><mrow><mi>K</mi></mrow><mrow><mi>r</mi></mrow></msub><mo>,</mo><msub><mrow><mi>C</mi></mrow><mrow><mo>≥</mo><mi>k</mi></mrow></msub><mo>}</mo></math></span>, we are able to show the value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for <span><math><mi>r</mi><mo>≥</mo><mo>⌊</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>2</mn></math></span> and all <em>n</em>. As an application of this result, we confirm Katona and Xiao's conjecture in a stronger form. For <span><math><mi>r</mi><mo>≤</mo><mo>⌊</mo><mo>(</mo><mi>k</mi><mo>−</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>1</mn></math></span>, we manage to show the value of <span><math><mrow><mi>ex</mi></mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>H</mi><mo>)</mo></math></span> for sufficiently large <em>n</em>.</div></div>\",\"PeriodicalId\":50877,\"journal\":{\"name\":\"Advances in Applied Mathematics\",\"volume\":\"171 \",\"pages\":\"Article 102936\"},\"PeriodicalIF\":1.3000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Applied Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0196885825000983\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0196885825000983","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

摘要

设H是一个图族。Turán数字ex(n,H)是n顶点图中不包含H的任何成员作为子图的最大可能边数。作为Turán定理和Erdős-Gallai定理关于Turán个数的一般推广,Alon和Frankl确定了H={Kr,Mk}的ex(n,H),其中Mk是大小为k的匹配。Katona和Xiao用Pk代替Mk,得到了r≤⌊k/2⌋且n足够大时H={Kr,Pk}的Turán个数,并提出了r≥⌊k/2⌋+1且n足够大的猜想。考虑到ex(n,Pk)的结果可以由ex(n,C≥k)的结果推导出来,本文研究了{Kr,C≥k}的Turán个数,其中C≥k表示长度至少为k的循环集,即在团数不超过r−1且周长不超过k−1的图中,我们的目的是确定最大边数。对于H={Kr,C≥k},我们能够给出当r≥⌊(k−1)/2⌋+2时ex(n,H)的值,并且所有n的值。作为这一结果的应用,我们以更强的形式证实了Katona和Xiao的猜想。对于r≤⌊(k−1)/2⌋+1,我们可以得到当n足够大时ex(n,H)的值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The number of edges in graphs with bounded clique number and circumference
Let H be a family of graphs. The Turán number ex(n,H) is the maximum possible number of edges in an n-vertex graph which does not contain any member of H as a subgraph. As a common generalization of Turán's theorem and Erdős-Gallai theorem on the Turán number of matchings, Alon and Frankl determined ex(n,H) for H={Kr,Mk}, where Mk is a matching of size k. Replacing Mk by Pk, Katona and Xiao obtained the Turán number of H={Kr,Pk} for rk/2 and sufficiently large n. In addition, they proposed a conjecture for the case where rk/2+1 and n is sufficiently large. Motivated by the fact that the result for ex(n,Pk) can be deduced from the one for ex(n,Ck), we investigate the Turán number of {Kr,Ck} in this paper, where Ck denotes the set of cycles of length at least k. In other words, we aim to determine the maximum number of edges in graphs with clique number at most r1 and circumference at most k1. For H={Kr,Ck}, we are able to show the value of ex(n,H) for r(k1)/2+2 and all n. As an application of this result, we confirm Katona and Xiao's conjecture in a stronger form. For r(k1)/2+1, we manage to show the value of ex(n,H) for sufficiently large n.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advances in Applied Mathematics
Advances in Applied Mathematics 数学-应用数学
CiteScore
2.00
自引率
9.10%
发文量
88
审稿时长
85 days
期刊介绍: Interdisciplinary in its coverage, Advances in Applied Mathematics is dedicated to the publication of original and survey articles on rigorous methods and results in applied mathematics. The journal features articles on discrete mathematics, discrete probability theory, theoretical statistics, mathematical biology and bioinformatics, applied commutative algebra and algebraic geometry, convexity theory, experimental mathematics, theoretical computer science, and other areas. Emphasizing papers that represent a substantial mathematical advance in their field, the journal is an excellent source of current information for mathematicians, computer scientists, applied mathematicians, physicists, statisticians, and biologists. Over the past ten years, Advances in Applied Mathematics has published research papers written by many of the foremost mathematicians of our time.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信