AttenHideNet:一种新的基于深度学习的图像隐写方法,使用轻量级的带有软注意的U-net

IF 7.2 1区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Younis M. Younis , Ramadhan J. Mstafa , Shamal AL-Dohuki
{"title":"AttenHideNet:一种新的基于深度学习的图像隐写方法,使用轻量级的带有软注意的U-net","authors":"Younis M. Younis ,&nbsp;Ramadhan J. Mstafa ,&nbsp;Shamal AL-Dohuki","doi":"10.1016/j.asoc.2025.113583","DOIUrl":null,"url":null,"abstract":"<div><div>Image-to-image steganography, embedding secret information within images while preserving visual quality, has become essential due to growing demands for secure and efficient digital communication. Traditional methods often struggle to achieve high embedding capacity without sacrificing imperceptibility. Recent advancements in deep learning have offered promising solutions by enabling more complex data embedding strategies. In this paper, we propose AttenHideNet, a novel deep learning-based steganography method leveraging a lightweight U-Net architecture (&lt;1.2 million parameters) combined with soft attention mechanisms. By utilizing the YUV color space instead of RGB, our method significantly improves embedding efficiency, capacity, and visual imperceptibility. AttenHideNet achieves an embedding capacity of up to 24 bits per pixel (bpp) while maintaining high visual quality. The soft attention mechanism dynamically identifies and prioritizes embedding in less perceptually sensitive image regions. Experimental results on benchmark datasets demonstrate that AttenHideNet achieves superior visual quality (PSNR up to 52.67 dB) compared to state-of-the-art methods, with low latency (18 ms/image) and minimal memory usage (4.11 MB), making it suitable for real-time applications. Despite these advantages, the method shows limited robustness under firm JPEG compression and geometric transformations, highlighting essential directions for future research.</div></div>","PeriodicalId":50737,"journal":{"name":"Applied Soft Computing","volume":"182 ","pages":"Article 113583"},"PeriodicalIF":7.2000,"publicationDate":"2025-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"AttenHideNet: A novel deep learning-based image steganography method using a lightweight U-net with soft attention\",\"authors\":\"Younis M. Younis ,&nbsp;Ramadhan J. Mstafa ,&nbsp;Shamal AL-Dohuki\",\"doi\":\"10.1016/j.asoc.2025.113583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Image-to-image steganography, embedding secret information within images while preserving visual quality, has become essential due to growing demands for secure and efficient digital communication. Traditional methods often struggle to achieve high embedding capacity without sacrificing imperceptibility. Recent advancements in deep learning have offered promising solutions by enabling more complex data embedding strategies. In this paper, we propose AttenHideNet, a novel deep learning-based steganography method leveraging a lightweight U-Net architecture (&lt;1.2 million parameters) combined with soft attention mechanisms. By utilizing the YUV color space instead of RGB, our method significantly improves embedding efficiency, capacity, and visual imperceptibility. AttenHideNet achieves an embedding capacity of up to 24 bits per pixel (bpp) while maintaining high visual quality. The soft attention mechanism dynamically identifies and prioritizes embedding in less perceptually sensitive image regions. Experimental results on benchmark datasets demonstrate that AttenHideNet achieves superior visual quality (PSNR up to 52.67 dB) compared to state-of-the-art methods, with low latency (18 ms/image) and minimal memory usage (4.11 MB), making it suitable for real-time applications. Despite these advantages, the method shows limited robustness under firm JPEG compression and geometric transformations, highlighting essential directions for future research.</div></div>\",\"PeriodicalId\":50737,\"journal\":{\"name\":\"Applied Soft Computing\",\"volume\":\"182 \",\"pages\":\"Article 113583\"},\"PeriodicalIF\":7.2000,\"publicationDate\":\"2025-07-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Soft Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1568494625008944\",\"RegionNum\":1,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Soft Computing","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1568494625008944","RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

由于对安全和高效的数字通信的需求日益增长,图像到图像的隐写术,在保持视觉质量的同时在图像中嵌入秘密信息,已经变得必不可少。传统方法往往难以在不牺牲隐蔽性的情况下实现高嵌入容量。深度学习的最新进展通过实现更复杂的数据嵌入策略提供了有前途的解决方案。在本文中,我们提出了AttenHideNet,这是一种基于深度学习的新型隐写方法,利用轻量级U-Net架构(<; 120万个参数)结合软注意机制。通过使用YUV颜色空间代替RGB,我们的方法显著提高了嵌入效率、容量和视觉隐蔽性。在保持高视觉质量的同时,AttenHideNet实现了高达24比特每像素(bpp)的嵌入容量。软注意机制动态识别和优先嵌入在感知敏感度较低的图像区域。在基准数据集上的实验结果表明,与最先进的方法相比,AttenHideNet实现了卓越的视觉质量(PSNR高达52.67 dB),具有低延迟(18 ms/图像)和最小的内存使用(4.11 MB),使其适合实时应用。尽管有这些优点,但该方法在JPEG压缩和几何变换下的鲁棒性有限,这突出了未来研究的重要方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
AttenHideNet: A novel deep learning-based image steganography method using a lightweight U-net with soft attention
Image-to-image steganography, embedding secret information within images while preserving visual quality, has become essential due to growing demands for secure and efficient digital communication. Traditional methods often struggle to achieve high embedding capacity without sacrificing imperceptibility. Recent advancements in deep learning have offered promising solutions by enabling more complex data embedding strategies. In this paper, we propose AttenHideNet, a novel deep learning-based steganography method leveraging a lightweight U-Net architecture (<1.2 million parameters) combined with soft attention mechanisms. By utilizing the YUV color space instead of RGB, our method significantly improves embedding efficiency, capacity, and visual imperceptibility. AttenHideNet achieves an embedding capacity of up to 24 bits per pixel (bpp) while maintaining high visual quality. The soft attention mechanism dynamically identifies and prioritizes embedding in less perceptually sensitive image regions. Experimental results on benchmark datasets demonstrate that AttenHideNet achieves superior visual quality (PSNR up to 52.67 dB) compared to state-of-the-art methods, with low latency (18 ms/image) and minimal memory usage (4.11 MB), making it suitable for real-time applications. Despite these advantages, the method shows limited robustness under firm JPEG compression and geometric transformations, highlighting essential directions for future research.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Soft Computing
Applied Soft Computing 工程技术-计算机:跨学科应用
CiteScore
15.80
自引率
6.90%
发文量
874
审稿时长
10.9 months
期刊介绍: Applied Soft Computing is an international journal promoting an integrated view of soft computing to solve real life problems.The focus is to publish the highest quality research in application and convergence of the areas of Fuzzy Logic, Neural Networks, Evolutionary Computing, Rough Sets and other similar techniques to address real world complexities. Applied Soft Computing is a rolling publication: articles are published as soon as the editor-in-chief has accepted them. Therefore, the web site will continuously be updated with new articles and the publication time will be short.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信