表面活化藻马尼拉罗望子生物量吸附铬黑和碱性橙染料的机理及人工神经网络建模

S. Karishma, V.C. Deivayanai, P. Thamarai, A. Saravanan, A.S. Vickram, Y.P. Ragini
{"title":"表面活化藻马尼拉罗望子生物量吸附铬黑和碱性橙染料的机理及人工神经网络建模","authors":"S. Karishma,&nbsp;V.C. Deivayanai,&nbsp;P. Thamarai,&nbsp;A. Saravanan,&nbsp;A.S. Vickram,&nbsp;Y.P. Ragini","doi":"10.1016/j.scowo.2025.100084","DOIUrl":null,"url":null,"abstract":"<div><div>Acid activation for adsorbent modification aims at enhancing the surface characteristics and adsorption nature. Artificial Neural Network (ANN) enables the prediction and precise modeling of adsorption processes for enhanced pollutant removal through optimization. The current research explores the mechanistic insights and ANN modeling for eriochrome black (EB) and basic orange (BO) dye adsorption using acid activated algal-manila tamarind seed biomass. Characterization analysis of Brunauer-Emmett–Teller (BET) analysis and X-Ray Photoelectron Spectroscopy (XPS) analysis confirmed the adequate surface properties and elements for the dye remediation. BET and XPS analysis revealed the porous diameter to be 2.868 nm with carbon composition of 79.28 %. Batch adsorptive analysis revealed the optimal parameters for dye adsorption to be 1.25 g/L dose, 40 min process time, pH of 5 and 8 for eriochrome black and basic orange dye. Sips model proved to be the best fitting isotherm with maximum adsorption of 253.6 mg/g of eriochrome black and 282.4 mg/g basic orange dye adsorption was observed. ANN Back propagation algorithm with Levenberg-Marquandt (LM) algorithm was observed to be optimal for the ANN model development. The mathematical predictive modeling of adsorption using artificial neural network revealed the correlation coefficient to be 0.9974 for BO dye and 0.9902 for EB dye adsorption using acid activated mixed biomass. The acid activated algal-plant seed biomass can be reused up to 7 consecutive adsorption cycles.</div></div>","PeriodicalId":101197,"journal":{"name":"Sustainable Chemistry One World","volume":"7 ","pages":"Article 100084"},"PeriodicalIF":0.0000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mechanistic insights and ANN modeling of eriochrome black and basic orange dye adsorption using surface activated algal-manila tamarind seed biomass\",\"authors\":\"S. Karishma,&nbsp;V.C. Deivayanai,&nbsp;P. Thamarai,&nbsp;A. Saravanan,&nbsp;A.S. Vickram,&nbsp;Y.P. Ragini\",\"doi\":\"10.1016/j.scowo.2025.100084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Acid activation for adsorbent modification aims at enhancing the surface characteristics and adsorption nature. Artificial Neural Network (ANN) enables the prediction and precise modeling of adsorption processes for enhanced pollutant removal through optimization. The current research explores the mechanistic insights and ANN modeling for eriochrome black (EB) and basic orange (BO) dye adsorption using acid activated algal-manila tamarind seed biomass. Characterization analysis of Brunauer-Emmett–Teller (BET) analysis and X-Ray Photoelectron Spectroscopy (XPS) analysis confirmed the adequate surface properties and elements for the dye remediation. BET and XPS analysis revealed the porous diameter to be 2.868 nm with carbon composition of 79.28 %. Batch adsorptive analysis revealed the optimal parameters for dye adsorption to be 1.25 g/L dose, 40 min process time, pH of 5 and 8 for eriochrome black and basic orange dye. Sips model proved to be the best fitting isotherm with maximum adsorption of 253.6 mg/g of eriochrome black and 282.4 mg/g basic orange dye adsorption was observed. ANN Back propagation algorithm with Levenberg-Marquandt (LM) algorithm was observed to be optimal for the ANN model development. The mathematical predictive modeling of adsorption using artificial neural network revealed the correlation coefficient to be 0.9974 for BO dye and 0.9902 for EB dye adsorption using acid activated mixed biomass. The acid activated algal-plant seed biomass can be reused up to 7 consecutive adsorption cycles.</div></div>\",\"PeriodicalId\":101197,\"journal\":{\"name\":\"Sustainable Chemistry One World\",\"volume\":\"7 \",\"pages\":\"Article 100084\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sustainable Chemistry One World\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2950357425000411\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Chemistry One World","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2950357425000411","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

酸活化对吸附剂进行改性的目的是提高吸附剂的表面特性和吸附性能。人工神经网络(ANN)能够通过优化来预测和精确建模吸附过程,以增强污染物的去除。本研究探讨了酸活化藻马尼拉罗望子生物量吸附eriochrome black (EB)和碱性橙(BO)染料的机理和人工神经网络建模。brunauer - emmet - teller (BET)分析和x射线光电子能谱(XPS)分析证实了染料修复所需的表面性质和元素。BET和XPS分析表明,孔直径为2.868 nm,碳组成为79.28 %。间歇吸附分析结果表明,染料吸附的最佳工艺参数为:剂量为1.25 g/L、处理时间为40 min、pH为5和8。Sips模型为最佳拟合等温线,最大吸附量为253.6 mg/g铬黑,最大吸附量为282.4 mg/g碱性橙染料。采用Levenberg-Marquandt (LM)算法的人工神经网络反向传播算法最适合于人工神经网络模型的建立。利用人工神经网络建立吸附数学预测模型,结果表明,酸活化混合生物质吸附BO染料的相关系数为0.9974,吸附EB染料的相关系数为0.9902。酸活化的藻类植物种子生物量可重复使用长达7个连续吸附循环。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mechanistic insights and ANN modeling of eriochrome black and basic orange dye adsorption using surface activated algal-manila tamarind seed biomass
Acid activation for adsorbent modification aims at enhancing the surface characteristics and adsorption nature. Artificial Neural Network (ANN) enables the prediction and precise modeling of adsorption processes for enhanced pollutant removal through optimization. The current research explores the mechanistic insights and ANN modeling for eriochrome black (EB) and basic orange (BO) dye adsorption using acid activated algal-manila tamarind seed biomass. Characterization analysis of Brunauer-Emmett–Teller (BET) analysis and X-Ray Photoelectron Spectroscopy (XPS) analysis confirmed the adequate surface properties and elements for the dye remediation. BET and XPS analysis revealed the porous diameter to be 2.868 nm with carbon composition of 79.28 %. Batch adsorptive analysis revealed the optimal parameters for dye adsorption to be 1.25 g/L dose, 40 min process time, pH of 5 and 8 for eriochrome black and basic orange dye. Sips model proved to be the best fitting isotherm with maximum adsorption of 253.6 mg/g of eriochrome black and 282.4 mg/g basic orange dye adsorption was observed. ANN Back propagation algorithm with Levenberg-Marquandt (LM) algorithm was observed to be optimal for the ANN model development. The mathematical predictive modeling of adsorption using artificial neural network revealed the correlation coefficient to be 0.9974 for BO dye and 0.9902 for EB dye adsorption using acid activated mixed biomass. The acid activated algal-plant seed biomass can be reused up to 7 consecutive adsorption cycles.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信