基于动态非均质平行快速多极法的离散位错动力学大尺度模拟

IF 4.8 2区 工程技术 Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Kang Zou , Genshen Chu , Dandan Chen
{"title":"基于动态非均质平行快速多极法的离散位错动力学大尺度模拟","authors":"Kang Zou ,&nbsp;Genshen Chu ,&nbsp;Dandan Chen","doi":"10.1016/j.compstruc.2025.107887","DOIUrl":null,"url":null,"abstract":"<div><div>Discrete dislocation dynamics (DDD) studies the plastic deformation of structural materials by directly simulating the collective evolution of a large number of dislocations, revealing the intrinsic physical correlation between material microstructure, dislocation microstructure, and plastic mechanical behavior. This paper proposes PFM-DDD, a novel parallel computation framework designed to combine DDD with fast multipole method (FMM) for simulating plastic deformation with over millions of degrees of freedom. PFM-DDD achieves large-scale fast simulation through three synergistic modules: (1) custom data structures linking FMM with DDD for efficient storage and retrieval of dislocation segments and FMM cells; (2) adaptive task partitioning to mitigate load imbalance issues in parallel simulations; (3) two-stage FMM heterogeneous parallel DDD design, including subdomain-level parallel FMM on CPUs and GPU-accelerated strategies. Experimental results demonstrate that PFM-DDD has good accuracy and exhibits superior computational performance compared to the state-of-the-art DDD simulation program ParaDiS.</div></div>","PeriodicalId":50626,"journal":{"name":"Computers & Structures","volume":"316 ","pages":"Article 107887"},"PeriodicalIF":4.8000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Large-scale simulation of discrete dislocation dynamics based on dynamic heterogeneous parallel fast multipole method\",\"authors\":\"Kang Zou ,&nbsp;Genshen Chu ,&nbsp;Dandan Chen\",\"doi\":\"10.1016/j.compstruc.2025.107887\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Discrete dislocation dynamics (DDD) studies the plastic deformation of structural materials by directly simulating the collective evolution of a large number of dislocations, revealing the intrinsic physical correlation between material microstructure, dislocation microstructure, and plastic mechanical behavior. This paper proposes PFM-DDD, a novel parallel computation framework designed to combine DDD with fast multipole method (FMM) for simulating plastic deformation with over millions of degrees of freedom. PFM-DDD achieves large-scale fast simulation through three synergistic modules: (1) custom data structures linking FMM with DDD for efficient storage and retrieval of dislocation segments and FMM cells; (2) adaptive task partitioning to mitigate load imbalance issues in parallel simulations; (3) two-stage FMM heterogeneous parallel DDD design, including subdomain-level parallel FMM on CPUs and GPU-accelerated strategies. Experimental results demonstrate that PFM-DDD has good accuracy and exhibits superior computational performance compared to the state-of-the-art DDD simulation program ParaDiS.</div></div>\",\"PeriodicalId\":50626,\"journal\":{\"name\":\"Computers & Structures\",\"volume\":\"316 \",\"pages\":\"Article 107887\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computers & Structures\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0045794925002457\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computers & Structures","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0045794925002457","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

离散位错动力学(DDD)通过直接模拟大量位错的集体演化来研究结构材料的塑性变形,揭示材料微观结构、位错微观结构与塑性力学行为之间的内在物理关联。本文提出了一种新的并行计算框架PFM-DDD,将DDD与快速多极法(FMM)相结合,用于模拟超过百万自由度的塑性变形。PFM-DDD通过三个协同模块实现大规模快速仿真:(1)连接FMM和DDD的自定义数据结构,实现位错段和FMM单元的高效存储和检索;(2)自适应任务划分,缓解并行仿真中的负载不平衡问题;(3)两阶段FMM异构并行DDD设计,包括基于cpu的子域级并行FMM和gpu加速策略。实验结果表明,与目前最先进的DDD仿真程序ParaDiS相比,PFM-DDD具有良好的精度和优越的计算性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Large-scale simulation of discrete dislocation dynamics based on dynamic heterogeneous parallel fast multipole method
Discrete dislocation dynamics (DDD) studies the plastic deformation of structural materials by directly simulating the collective evolution of a large number of dislocations, revealing the intrinsic physical correlation between material microstructure, dislocation microstructure, and plastic mechanical behavior. This paper proposes PFM-DDD, a novel parallel computation framework designed to combine DDD with fast multipole method (FMM) for simulating plastic deformation with over millions of degrees of freedom. PFM-DDD achieves large-scale fast simulation through three synergistic modules: (1) custom data structures linking FMM with DDD for efficient storage and retrieval of dislocation segments and FMM cells; (2) adaptive task partitioning to mitigate load imbalance issues in parallel simulations; (3) two-stage FMM heterogeneous parallel DDD design, including subdomain-level parallel FMM on CPUs and GPU-accelerated strategies. Experimental results demonstrate that PFM-DDD has good accuracy and exhibits superior computational performance compared to the state-of-the-art DDD simulation program ParaDiS.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computers & Structures
Computers & Structures 工程技术-工程:土木
CiteScore
8.80
自引率
6.40%
发文量
122
审稿时长
33 days
期刊介绍: Computers & Structures publishes advances in the development and use of computational methods for the solution of problems in engineering and the sciences. The range of appropriate contributions is wide, and includes papers on establishing appropriate mathematical models and their numerical solution in all areas of mechanics. The journal also includes articles that present a substantial review of a field in the topics of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信