Y. Liu , H.J. Hu , Y.H. Shi , C. Zhou , Y.N. Zan , M. Song , D. Wang , Q.Z. Wang , B.L. Xiao , Z.Y. Ma
{"title":"Al- ceo2原位反应制备Al基复合材料的微观结构和力学性能","authors":"Y. Liu , H.J. Hu , Y.H. Shi , C. Zhou , Y.N. Zan , M. Song , D. Wang , Q.Z. Wang , B.L. Xiao , Z.Y. Ma","doi":"10.1016/j.matchar.2025.115373","DOIUrl":null,"url":null,"abstract":"<div><div>This study reports a breakthrough in designing heat-resistant Al matrix composites through a controlled Al-CeO<sub>2</sub> in-situ reaction, achieving exceptional thermal stability via a novel interfacial mutual stabilization mechanism between amorphous Al<sub>2</sub>O<sub>3</sub> (am-Al<sub>2</sub>O<sub>3</sub>) and Al<sub>11</sub>Ce<sub>3</sub>. By regulating the hot-pressing temperature (490–610 °C), it is demonstrated that the tensile strength can be modulated over a 52 % range (143–218 MPa, 350 °C), directly governed by the evolution of a unique core-shell structure where am-Al<sub>2</sub>O<sub>3</sub> layers encapsulate Al<sub>11</sub>Ce<sub>3</sub> and CeO<sub>2</sub> nanoparticles. Detailed characterization reveals that the am-Al<sub>2</sub>O<sub>3</sub> shell effectively suppresses Al<sub>11</sub>Ce<sub>3</sub> coarsening, while the Al<sub>11</sub>Ce<sub>3</sub> core chemically stabilizes the am-Al<sub>2</sub>O<sub>3</sub> against crystallization – a reciprocal stabilization effect. The composite retains >98.8 % of its original strength after annealing at 350 °C for 1000 h and 450 °C for 360 h. Concurrently, the composite displays exceptional corrosion resistance (0.03 mg·cm<sup>−3</sup> weight loss vs. 4.14 mg·cm<sup>−3</sup> for 2219 Al alloy). This work establishes a new materials design paradigm leveraging amorphous-crystalline interfacial synergy, providing a pathway to tailor high-temperature composites.</div></div>","PeriodicalId":18727,"journal":{"name":"Materials Characterization","volume":"228 ","pages":"Article 115373"},"PeriodicalIF":5.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Microstructure and mechanical properties of Al matrix composites produced by Al-CeO2 in-situ reaction\",\"authors\":\"Y. Liu , H.J. Hu , Y.H. Shi , C. Zhou , Y.N. Zan , M. Song , D. Wang , Q.Z. Wang , B.L. Xiao , Z.Y. Ma\",\"doi\":\"10.1016/j.matchar.2025.115373\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>This study reports a breakthrough in designing heat-resistant Al matrix composites through a controlled Al-CeO<sub>2</sub> in-situ reaction, achieving exceptional thermal stability via a novel interfacial mutual stabilization mechanism between amorphous Al<sub>2</sub>O<sub>3</sub> (am-Al<sub>2</sub>O<sub>3</sub>) and Al<sub>11</sub>Ce<sub>3</sub>. By regulating the hot-pressing temperature (490–610 °C), it is demonstrated that the tensile strength can be modulated over a 52 % range (143–218 MPa, 350 °C), directly governed by the evolution of a unique core-shell structure where am-Al<sub>2</sub>O<sub>3</sub> layers encapsulate Al<sub>11</sub>Ce<sub>3</sub> and CeO<sub>2</sub> nanoparticles. Detailed characterization reveals that the am-Al<sub>2</sub>O<sub>3</sub> shell effectively suppresses Al<sub>11</sub>Ce<sub>3</sub> coarsening, while the Al<sub>11</sub>Ce<sub>3</sub> core chemically stabilizes the am-Al<sub>2</sub>O<sub>3</sub> against crystallization – a reciprocal stabilization effect. The composite retains >98.8 % of its original strength after annealing at 350 °C for 1000 h and 450 °C for 360 h. Concurrently, the composite displays exceptional corrosion resistance (0.03 mg·cm<sup>−3</sup> weight loss vs. 4.14 mg·cm<sup>−3</sup> for 2219 Al alloy). This work establishes a new materials design paradigm leveraging amorphous-crystalline interfacial synergy, providing a pathway to tailor high-temperature composites.</div></div>\",\"PeriodicalId\":18727,\"journal\":{\"name\":\"Materials Characterization\",\"volume\":\"228 \",\"pages\":\"Article 115373\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Characterization\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S104458032500662X\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, CHARACTERIZATION & TESTING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Characterization","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S104458032500662X","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, CHARACTERIZATION & TESTING","Score":null,"Total":0}
Microstructure and mechanical properties of Al matrix composites produced by Al-CeO2 in-situ reaction
This study reports a breakthrough in designing heat-resistant Al matrix composites through a controlled Al-CeO2 in-situ reaction, achieving exceptional thermal stability via a novel interfacial mutual stabilization mechanism between amorphous Al2O3 (am-Al2O3) and Al11Ce3. By regulating the hot-pressing temperature (490–610 °C), it is demonstrated that the tensile strength can be modulated over a 52 % range (143–218 MPa, 350 °C), directly governed by the evolution of a unique core-shell structure where am-Al2O3 layers encapsulate Al11Ce3 and CeO2 nanoparticles. Detailed characterization reveals that the am-Al2O3 shell effectively suppresses Al11Ce3 coarsening, while the Al11Ce3 core chemically stabilizes the am-Al2O3 against crystallization – a reciprocal stabilization effect. The composite retains >98.8 % of its original strength after annealing at 350 °C for 1000 h and 450 °C for 360 h. Concurrently, the composite displays exceptional corrosion resistance (0.03 mg·cm−3 weight loss vs. 4.14 mg·cm−3 for 2219 Al alloy). This work establishes a new materials design paradigm leveraging amorphous-crystalline interfacial synergy, providing a pathway to tailor high-temperature composites.
期刊介绍:
Materials Characterization features original articles and state-of-the-art reviews on theoretical and practical aspects of the structure and behaviour of materials.
The Journal focuses on all characterization techniques, including all forms of microscopy (light, electron, acoustic, etc.,) and analysis (especially microanalysis and surface analytical techniques). Developments in both this wide range of techniques and their application to the quantification of the microstructure of materials are essential facets of the Journal.
The Journal provides the Materials Scientist/Engineer with up-to-date information on many types of materials with an underlying theme of explaining the behavior of materials using novel approaches. Materials covered by the journal include:
Metals & Alloys
Ceramics
Nanomaterials
Biomedical materials
Optical materials
Composites
Natural Materials.