粘性液滴撞击粗糙表面

IF 3.8 2区 工程技术 Q1 MECHANICS
Lihui Liu , Guobiao Cai , Bohan Jiang , Bijiao He , Peichun Amy Tsai
{"title":"粘性液滴撞击粗糙表面","authors":"Lihui Liu ,&nbsp;Guobiao Cai ,&nbsp;Bohan Jiang ,&nbsp;Bijiao He ,&nbsp;Peichun Amy Tsai","doi":"10.1016/j.ijmultiphaseflow.2025.105345","DOIUrl":null,"url":null,"abstract":"<div><div>We experimentally investigate the dynamics of viscous droplets impacting on rough surfaces under a broad range of Weber number (<span><math><mrow><mn>2</mn><mo>≤</mo><mi>We</mi><mo>≤</mo><mn>1</mn><mo>,</mo><mn>194</mn></mrow></math></span>), Ohnesorge number (<span><math><mrow><mn>0</mn><mo>.</mo><mn>002</mn><mo>≤</mo><mi>Oh</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>630</mn></mrow></math></span>), and average surface roughness (<span><math><mrow><mn>9</mn><mo>.</mo><mn>7</mn><mspace></mspace><mi>μ</mi><mi>m</mi><mo>≤</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>≤</mo><mn>19</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>). Three primary impact outcomes—jetting, spreading, and splashing—are observed. Our findings reveal that surface roughness promotes splashing by amplifying perturbations, while liquid viscosity counters this effect by dissipating the kinetic energy of the advancing lamella. We empirically describe the splashing threshold with the relation as <span><math><mrow><mi>Oh</mi><msup><mrow><mi>Re</mi></mrow><mrow><mi>χ</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></msup><mo>=</mo><mi>K</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where the fitting parameter <span><math><mrow><mi>K</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> increases and <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> decreases with greater surface roughness. Moreover, the maximum spreading factor (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>), defined as the ratio of the droplet’s maximum spreading diameter to its initial diameter, shows a pronounced dependence on surface roughness in low-viscosity conditions (<span><math><mrow><mi>Oh</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>050</mn></mrow></math></span>), but this dependence diminishes in high-viscosity regimes (<span><math><mrow><mi>Oh</mi><mo>≥</mo><mn>0</mn><mo>.</mo><mn>050</mn></mrow></math></span>). This trend results from the interplay between viscous dissipation induced by surface roughness and the intrinsic liquid viscosity. In the low-viscosity regime, the experimental <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is consistent with the empirical scaling law of <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>a</mi><msup><mrow><mrow><mo>(</mo><mi>We</mi><mo>/</mo><mi>Oh</mi><mo>)</mo></mrow></mrow><mrow><mi>b</mi></mrow></msup></mrow></math></span>, with the fitting constants, <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span>, varying with surface roughness and liquid properties. In the regime of <span><math><mrow><mn>0</mn><mo>.</mo><mn>050</mn><mo>&lt;</mo><mi>Oh</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> approximates <span><math><msup><mrow><mrow><mo>(</mo><mi>We</mi><mo>/</mo><mi>Oh</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>6</mn></mrow></msup></math></span>. These findings elucidate the significant role of surface roughness and liquid viscosity in governing droplet impact dynamics and spreading.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"192 ","pages":"Article 105345"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscous droplets impact on rough surfaces\",\"authors\":\"Lihui Liu ,&nbsp;Guobiao Cai ,&nbsp;Bohan Jiang ,&nbsp;Bijiao He ,&nbsp;Peichun Amy Tsai\",\"doi\":\"10.1016/j.ijmultiphaseflow.2025.105345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We experimentally investigate the dynamics of viscous droplets impacting on rough surfaces under a broad range of Weber number (<span><math><mrow><mn>2</mn><mo>≤</mo><mi>We</mi><mo>≤</mo><mn>1</mn><mo>,</mo><mn>194</mn></mrow></math></span>), Ohnesorge number (<span><math><mrow><mn>0</mn><mo>.</mo><mn>002</mn><mo>≤</mo><mi>Oh</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>630</mn></mrow></math></span>), and average surface roughness (<span><math><mrow><mn>9</mn><mo>.</mo><mn>7</mn><mspace></mspace><mi>μ</mi><mi>m</mi><mo>≤</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>≤</mo><mn>19</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>). Three primary impact outcomes—jetting, spreading, and splashing—are observed. Our findings reveal that surface roughness promotes splashing by amplifying perturbations, while liquid viscosity counters this effect by dissipating the kinetic energy of the advancing lamella. We empirically describe the splashing threshold with the relation as <span><math><mrow><mi>Oh</mi><msup><mrow><mi>Re</mi></mrow><mrow><mi>χ</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></msup><mo>=</mo><mi>K</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where the fitting parameter <span><math><mrow><mi>K</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> increases and <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> decreases with greater surface roughness. Moreover, the maximum spreading factor (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>), defined as the ratio of the droplet’s maximum spreading diameter to its initial diameter, shows a pronounced dependence on surface roughness in low-viscosity conditions (<span><math><mrow><mi>Oh</mi><mo>&lt;</mo><mn>0</mn><mo>.</mo><mn>050</mn></mrow></math></span>), but this dependence diminishes in high-viscosity regimes (<span><math><mrow><mi>Oh</mi><mo>≥</mo><mn>0</mn><mo>.</mo><mn>050</mn></mrow></math></span>). This trend results from the interplay between viscous dissipation induced by surface roughness and the intrinsic liquid viscosity. In the low-viscosity regime, the experimental <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is consistent with the empirical scaling law of <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>a</mi><msup><mrow><mrow><mo>(</mo><mi>We</mi><mo>/</mo><mi>Oh</mi><mo>)</mo></mrow></mrow><mrow><mi>b</mi></mrow></msup></mrow></math></span>, with the fitting constants, <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span>, varying with surface roughness and liquid properties. In the regime of <span><math><mrow><mn>0</mn><mo>.</mo><mn>050</mn><mo>&lt;</mo><mi>Oh</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> approximates <span><math><msup><mrow><mrow><mo>(</mo><mi>We</mi><mo>/</mo><mi>Oh</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>6</mn></mrow></msup></math></span>. These findings elucidate the significant role of surface roughness and liquid viscosity in governing droplet impact dynamics and spreading.</div></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"192 \",\"pages\":\"Article 105345\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030193222500223X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030193222500223X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

摘要

实验研究了在Weber数(2≤We≤1194)、Ohnesorge数(0.002≤Oh≤2.630)和平均表面粗糙度(9.7μm≤Ra≤19.5μm)范围内黏性液滴撞击粗糙表面的动力学特性。我们观察到三种主要的撞击结果——喷射、扩散和飞溅。我们的研究结果表明,表面粗糙度通过放大扰动来促进飞溅,而液体粘度通过消散前进的薄片的动能来抵消这种影响。我们根据经验将飞溅阈值描述为OhReχ(Ra)=K(Ra)的关系,其中拟合参数K(Ra)随着表面粗糙度的增大而增大,χ(Ra)减小。此外,最大扩散因子(βm),定义为液滴最大扩散直径与其初始直径之比,在低粘度条件下(Oh<0.050)与表面粗糙度有明显的依赖性,但在高粘度条件下(Oh<0.050),这种依赖性减弱。这种趋势是由表面粗糙度引起的粘性耗散和固有液体粘度的相互作用造成的。在低粘度状态下,实验βm符合βm=a(We/Oh)b的经验标度规律,拟合常数a和b随表面粗糙度和液体性质的变化而变化。在0.050<Oh<;1区间,βm近似于(We/Oh)1/6。这些发现阐明了表面粗糙度和液体粘度在控制液滴撞击动力学和扩散中的重要作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Viscous droplets impact on rough surfaces

Viscous droplets impact on rough surfaces
We experimentally investigate the dynamics of viscous droplets impacting on rough surfaces under a broad range of Weber number (2We1,194), Ohnesorge number (0.002Oh2.630), and average surface roughness (9.7μmRa19.5μm). Three primary impact outcomes—jetting, spreading, and splashing—are observed. Our findings reveal that surface roughness promotes splashing by amplifying perturbations, while liquid viscosity counters this effect by dissipating the kinetic energy of the advancing lamella. We empirically describe the splashing threshold with the relation as OhReχ(Ra)=K(Ra), where the fitting parameter K(Ra) increases and χ(Ra) decreases with greater surface roughness. Moreover, the maximum spreading factor (βm), defined as the ratio of the droplet’s maximum spreading diameter to its initial diameter, shows a pronounced dependence on surface roughness in low-viscosity conditions (Oh<0.050), but this dependence diminishes in high-viscosity regimes (Oh0.050). This trend results from the interplay between viscous dissipation induced by surface roughness and the intrinsic liquid viscosity. In the low-viscosity regime, the experimental βm is consistent with the empirical scaling law of βm=a(We/Oh)b, with the fitting constants, a and b, varying with surface roughness and liquid properties. In the regime of 0.050<Oh<1, βm approximates (We/Oh)1/6. These findings elucidate the significant role of surface roughness and liquid viscosity in governing droplet impact dynamics and spreading.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
10.50%
发文量
244
审稿时长
4 months
期刊介绍: The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others. The journal publishes full papers, brief communications and conference announcements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信