Lihui Liu , Guobiao Cai , Bohan Jiang , Bijiao He , Peichun Amy Tsai
{"title":"粘性液滴撞击粗糙表面","authors":"Lihui Liu , Guobiao Cai , Bohan Jiang , Bijiao He , Peichun Amy Tsai","doi":"10.1016/j.ijmultiphaseflow.2025.105345","DOIUrl":null,"url":null,"abstract":"<div><div>We experimentally investigate the dynamics of viscous droplets impacting on rough surfaces under a broad range of Weber number (<span><math><mrow><mn>2</mn><mo>≤</mo><mi>We</mi><mo>≤</mo><mn>1</mn><mo>,</mo><mn>194</mn></mrow></math></span>), Ohnesorge number (<span><math><mrow><mn>0</mn><mo>.</mo><mn>002</mn><mo>≤</mo><mi>Oh</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>630</mn></mrow></math></span>), and average surface roughness (<span><math><mrow><mn>9</mn><mo>.</mo><mn>7</mn><mspace></mspace><mi>μ</mi><mi>m</mi><mo>≤</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>≤</mo><mn>19</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>). Three primary impact outcomes—jetting, spreading, and splashing—are observed. Our findings reveal that surface roughness promotes splashing by amplifying perturbations, while liquid viscosity counters this effect by dissipating the kinetic energy of the advancing lamella. We empirically describe the splashing threshold with the relation as <span><math><mrow><mi>Oh</mi><msup><mrow><mi>Re</mi></mrow><mrow><mi>χ</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></msup><mo>=</mo><mi>K</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where the fitting parameter <span><math><mrow><mi>K</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> increases and <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> decreases with greater surface roughness. Moreover, the maximum spreading factor (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>), defined as the ratio of the droplet’s maximum spreading diameter to its initial diameter, shows a pronounced dependence on surface roughness in low-viscosity conditions (<span><math><mrow><mi>Oh</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>050</mn></mrow></math></span>), but this dependence diminishes in high-viscosity regimes (<span><math><mrow><mi>Oh</mi><mo>≥</mo><mn>0</mn><mo>.</mo><mn>050</mn></mrow></math></span>). This trend results from the interplay between viscous dissipation induced by surface roughness and the intrinsic liquid viscosity. In the low-viscosity regime, the experimental <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is consistent with the empirical scaling law of <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>a</mi><msup><mrow><mrow><mo>(</mo><mi>We</mi><mo>/</mo><mi>Oh</mi><mo>)</mo></mrow></mrow><mrow><mi>b</mi></mrow></msup></mrow></math></span>, with the fitting constants, <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span>, varying with surface roughness and liquid properties. In the regime of <span><math><mrow><mn>0</mn><mo>.</mo><mn>050</mn><mo><</mo><mi>Oh</mi><mo><</mo><mn>1</mn></mrow></math></span>, <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> approximates <span><math><msup><mrow><mrow><mo>(</mo><mi>We</mi><mo>/</mo><mi>Oh</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>6</mn></mrow></msup></math></span>. These findings elucidate the significant role of surface roughness and liquid viscosity in governing droplet impact dynamics and spreading.</div></div>","PeriodicalId":339,"journal":{"name":"International Journal of Multiphase Flow","volume":"192 ","pages":"Article 105345"},"PeriodicalIF":3.8000,"publicationDate":"2025-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Viscous droplets impact on rough surfaces\",\"authors\":\"Lihui Liu , Guobiao Cai , Bohan Jiang , Bijiao He , Peichun Amy Tsai\",\"doi\":\"10.1016/j.ijmultiphaseflow.2025.105345\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>We experimentally investigate the dynamics of viscous droplets impacting on rough surfaces under a broad range of Weber number (<span><math><mrow><mn>2</mn><mo>≤</mo><mi>We</mi><mo>≤</mo><mn>1</mn><mo>,</mo><mn>194</mn></mrow></math></span>), Ohnesorge number (<span><math><mrow><mn>0</mn><mo>.</mo><mn>002</mn><mo>≤</mo><mi>Oh</mi><mo>≤</mo><mn>2</mn><mo>.</mo><mn>630</mn></mrow></math></span>), and average surface roughness (<span><math><mrow><mn>9</mn><mo>.</mo><mn>7</mn><mspace></mspace><mi>μ</mi><mi>m</mi><mo>≤</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>≤</mo><mn>19</mn><mo>.</mo><mn>5</mn><mspace></mspace><mi>μ</mi><mi>m</mi></mrow></math></span>). Three primary impact outcomes—jetting, spreading, and splashing—are observed. Our findings reveal that surface roughness promotes splashing by amplifying perturbations, while liquid viscosity counters this effect by dissipating the kinetic energy of the advancing lamella. We empirically describe the splashing threshold with the relation as <span><math><mrow><mi>Oh</mi><msup><mrow><mi>Re</mi></mrow><mrow><mi>χ</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></msup><mo>=</mo><mi>K</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span>, where the fitting parameter <span><math><mrow><mi>K</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> increases and <span><math><mrow><mi>χ</mi><mrow><mo>(</mo><msub><mrow><mi>R</mi></mrow><mrow><mi>a</mi></mrow></msub><mo>)</mo></mrow></mrow></math></span> decreases with greater surface roughness. Moreover, the maximum spreading factor (<span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span>), defined as the ratio of the droplet’s maximum spreading diameter to its initial diameter, shows a pronounced dependence on surface roughness in low-viscosity conditions (<span><math><mrow><mi>Oh</mi><mo><</mo><mn>0</mn><mo>.</mo><mn>050</mn></mrow></math></span>), but this dependence diminishes in high-viscosity regimes (<span><math><mrow><mi>Oh</mi><mo>≥</mo><mn>0</mn><mo>.</mo><mn>050</mn></mrow></math></span>). This trend results from the interplay between viscous dissipation induced by surface roughness and the intrinsic liquid viscosity. In the low-viscosity regime, the experimental <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> is consistent with the empirical scaling law of <span><math><mrow><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub><mo>=</mo><mi>a</mi><msup><mrow><mrow><mo>(</mo><mi>We</mi><mo>/</mo><mi>Oh</mi><mo>)</mo></mrow></mrow><mrow><mi>b</mi></mrow></msup></mrow></math></span>, with the fitting constants, <span><math><mi>a</mi></math></span> and <span><math><mi>b</mi></math></span>, varying with surface roughness and liquid properties. In the regime of <span><math><mrow><mn>0</mn><mo>.</mo><mn>050</mn><mo><</mo><mi>Oh</mi><mo><</mo><mn>1</mn></mrow></math></span>, <span><math><msub><mrow><mi>β</mi></mrow><mrow><mi>m</mi></mrow></msub></math></span> approximates <span><math><msup><mrow><mrow><mo>(</mo><mi>We</mi><mo>/</mo><mi>Oh</mi><mo>)</mo></mrow></mrow><mrow><mn>1</mn><mo>/</mo><mn>6</mn></mrow></msup></math></span>. These findings elucidate the significant role of surface roughness and liquid viscosity in governing droplet impact dynamics and spreading.</div></div>\",\"PeriodicalId\":339,\"journal\":{\"name\":\"International Journal of Multiphase Flow\",\"volume\":\"192 \",\"pages\":\"Article 105345\"},\"PeriodicalIF\":3.8000,\"publicationDate\":\"2025-07-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Multiphase Flow\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S030193222500223X\",\"RegionNum\":2,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MECHANICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Multiphase Flow","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S030193222500223X","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
We experimentally investigate the dynamics of viscous droplets impacting on rough surfaces under a broad range of Weber number (), Ohnesorge number (), and average surface roughness (). Three primary impact outcomes—jetting, spreading, and splashing—are observed. Our findings reveal that surface roughness promotes splashing by amplifying perturbations, while liquid viscosity counters this effect by dissipating the kinetic energy of the advancing lamella. We empirically describe the splashing threshold with the relation as , where the fitting parameter increases and decreases with greater surface roughness. Moreover, the maximum spreading factor (), defined as the ratio of the droplet’s maximum spreading diameter to its initial diameter, shows a pronounced dependence on surface roughness in low-viscosity conditions (), but this dependence diminishes in high-viscosity regimes (). This trend results from the interplay between viscous dissipation induced by surface roughness and the intrinsic liquid viscosity. In the low-viscosity regime, the experimental is consistent with the empirical scaling law of , with the fitting constants, and , varying with surface roughness and liquid properties. In the regime of , approximates . These findings elucidate the significant role of surface roughness and liquid viscosity in governing droplet impact dynamics and spreading.
期刊介绍:
The International Journal of Multiphase Flow publishes analytical, numerical and experimental articles of lasting interest. The scope of the journal includes all aspects of mass, momentum and energy exchange phenomena among different phases such as occur in disperse flows, gas–liquid and liquid–liquid flows, flows in porous media, boiling, granular flows and others.
The journal publishes full papers, brief communications and conference announcements.