利用无序为高性能固态电解质。

IF 16 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ACS Nano Pub Date : 2025-07-14 DOI:10.1021/acsnano.5c07439
Zhongkai Guo, Qingkun Zhu, Tianming Chen, Jiping Sun, Lishun Bai, Yue Liu, Huidong Niu, Ying He, Feiyan Yu, Kuhang Liu, Chengjun Liu, Jinhao Xu, Sijie Li* and Zhi Chang*, 
{"title":"利用无序为高性能固态电解质。","authors":"Zhongkai Guo,&nbsp;Qingkun Zhu,&nbsp;Tianming Chen,&nbsp;Jiping Sun,&nbsp;Lishun Bai,&nbsp;Yue Liu,&nbsp;Huidong Niu,&nbsp;Ying He,&nbsp;Feiyan Yu,&nbsp;Kuhang Liu,&nbsp;Chengjun Liu,&nbsp;Jinhao Xu,&nbsp;Sijie Li* and Zhi Chang*,&nbsp;","doi":"10.1021/acsnano.5c07439","DOIUrl":null,"url":null,"abstract":"<p >Solid-state electrolytes (SSEs) have emerged as transformative alternatives to traditional liquid electrolytes, addressing critical challenges while enabling safer, wider operational voltage windows and higher density batteries. High ionic conductivity inorganic solid-state electrolytes (HC-ISEs), such as LGPS (Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>), exhibit exceptional ionic conductivity but suffer from interfacial instability, grain boundaries resistance, poor compatibility with lithium metal anodes, and environmental sensitivity. Recent studies have revealed that engineered disorder, through cationic site disordering, amorphous phase integration, and glass–ceramic structural irregularities, can optimize ion diffusion pathways, mitigate interfacial resistance, and enhance electrochemical stability. This review systematically analyzes how controlled disorder elevates HC-ISEs’ performance, explores strategies to tailor disordered architectures, and underscores their pivotal role in realizing next-generation solid-state batteries with high reliability and energy density.</p>","PeriodicalId":21,"journal":{"name":"ACS Nano","volume":"19 29","pages":"26347–26363"},"PeriodicalIF":16.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Harnessing Disorder for High-Performance Solid-State Electrolytes\",\"authors\":\"Zhongkai Guo,&nbsp;Qingkun Zhu,&nbsp;Tianming Chen,&nbsp;Jiping Sun,&nbsp;Lishun Bai,&nbsp;Yue Liu,&nbsp;Huidong Niu,&nbsp;Ying He,&nbsp;Feiyan Yu,&nbsp;Kuhang Liu,&nbsp;Chengjun Liu,&nbsp;Jinhao Xu,&nbsp;Sijie Li* and Zhi Chang*,&nbsp;\",\"doi\":\"10.1021/acsnano.5c07439\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Solid-state electrolytes (SSEs) have emerged as transformative alternatives to traditional liquid electrolytes, addressing critical challenges while enabling safer, wider operational voltage windows and higher density batteries. High ionic conductivity inorganic solid-state electrolytes (HC-ISEs), such as LGPS (Li<sub>10</sub>GeP<sub>2</sub>S<sub>12</sub>), exhibit exceptional ionic conductivity but suffer from interfacial instability, grain boundaries resistance, poor compatibility with lithium metal anodes, and environmental sensitivity. Recent studies have revealed that engineered disorder, through cationic site disordering, amorphous phase integration, and glass–ceramic structural irregularities, can optimize ion diffusion pathways, mitigate interfacial resistance, and enhance electrochemical stability. This review systematically analyzes how controlled disorder elevates HC-ISEs’ performance, explores strategies to tailor disordered architectures, and underscores their pivotal role in realizing next-generation solid-state batteries with high reliability and energy density.</p>\",\"PeriodicalId\":21,\"journal\":{\"name\":\"ACS Nano\",\"volume\":\"19 29\",\"pages\":\"26347–26363\"},\"PeriodicalIF\":16.0000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Nano\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsnano.5c07439\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Nano","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsnano.5c07439","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

固态电解质(sse)已经成为传统液体电解质的变革性替代品,在实现更安全、更宽的工作电压窗口和更高密度电池的同时,解决了关键挑战。高离子导电性无机固态电解质(HC-ISEs),如LGPS (Li10GeP2S12),具有优异的离子导电性,但存在界面不稳定性、晶界电阻、与锂金属阳极相容性差以及环境敏感性等问题。最近的研究表明,通过阳离子位点无序化、非晶相集成和玻璃陶瓷结构不规则化,工程无序化可以优化离子扩散途径,减轻界面阻力,提高电化学稳定性。本文系统分析了可控无序如何提高HC-ISEs的性能,探索了定制无序架构的策略,并强调了它们在实现高可靠性和高能量密度的下一代固态电池中的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Harnessing Disorder for High-Performance Solid-State Electrolytes

Harnessing Disorder for High-Performance Solid-State Electrolytes

Solid-state electrolytes (SSEs) have emerged as transformative alternatives to traditional liquid electrolytes, addressing critical challenges while enabling safer, wider operational voltage windows and higher density batteries. High ionic conductivity inorganic solid-state electrolytes (HC-ISEs), such as LGPS (Li10GeP2S12), exhibit exceptional ionic conductivity but suffer from interfacial instability, grain boundaries resistance, poor compatibility with lithium metal anodes, and environmental sensitivity. Recent studies have revealed that engineered disorder, through cationic site disordering, amorphous phase integration, and glass–ceramic structural irregularities, can optimize ion diffusion pathways, mitigate interfacial resistance, and enhance electrochemical stability. This review systematically analyzes how controlled disorder elevates HC-ISEs’ performance, explores strategies to tailor disordered architectures, and underscores their pivotal role in realizing next-generation solid-state batteries with high reliability and energy density.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Nano
ACS Nano 工程技术-材料科学:综合
CiteScore
26.00
自引率
4.10%
发文量
1627
审稿时长
1.7 months
期刊介绍: ACS Nano, published monthly, serves as an international forum for comprehensive articles on nanoscience and nanotechnology research at the intersections of chemistry, biology, materials science, physics, and engineering. The journal fosters communication among scientists in these communities, facilitating collaboration, new research opportunities, and advancements through discoveries. ACS Nano covers synthesis, assembly, characterization, theory, and simulation of nanostructures, nanobiotechnology, nanofabrication, methods and tools for nanoscience and nanotechnology, and self- and directed-assembly. Alongside original research articles, it offers thorough reviews, perspectives on cutting-edge research, and discussions envisioning the future of nanoscience and nanotechnology.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信