{"title":"对比人类n -糖基化途径的宏观进化模式","authors":"Domagoj Kifer, Nina Čorak, Mirjana Domazet-Lošo, Niko Kasalo, Gordan Lauc, Göran Klobučar, Tomislav Domazet-Lošo","doi":"10.1016/j.eng.2025.06.039","DOIUrl":null,"url":null,"abstract":"Building on coding mutations and splicing variants, post-translational modifications add a final layer to protein diversity that operates at developmental and physiological timescales. Although protein glycosylation is one of the most common post-translational modifications, its evolutionary origin remains largely unexplored. Here, we performed a phylostratigraphic tracking of glycosylation machinery (GM) genes and their targets—glycosylated proteins—in a broad phylogenetic context. Our results show that the vast majority of human GM genes trace back to two evolutionary periods: the origin of all cellular organisms and the origin of all eukaryotes. This indicates that protein glycosylation is an ancient process likely common to all life, further elaborated in early eukaryotes. In contrast, human glycoproteins exhibited prominent enrichment signals in more recent evolutionary periods, suggesting an important role in the transition from metazoans to vertebrates. Focusing specifically on the N-glycosylation (NG) pathway, we noted that the majority of NG genes acting on the cytoplasmic side of the endoplasmic reticulum (ER) trace back to the origin of cellular organisms. This sharply contrasts with the rest of the NG pathway, which is oriented toward the ER lumen, where genes of eukaryotic origin predominate. In the Golgi, we also identified an analogous binary evolutionary origin of GM genes. We discuss these findings in the context of the evolutionary emergence of the eukaryotic endomembrane system and propose that the ER evolved through the invagination of a prokaryotic cell membrane containing an NG pathway.","PeriodicalId":11783,"journal":{"name":"Engineering","volume":"3 1","pages":""},"PeriodicalIF":10.1000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Contrasting Macroevolutionary Patterns in the Human N-Glycosylation Pathway\",\"authors\":\"Domagoj Kifer, Nina Čorak, Mirjana Domazet-Lošo, Niko Kasalo, Gordan Lauc, Göran Klobučar, Tomislav Domazet-Lošo\",\"doi\":\"10.1016/j.eng.2025.06.039\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Building on coding mutations and splicing variants, post-translational modifications add a final layer to protein diversity that operates at developmental and physiological timescales. Although protein glycosylation is one of the most common post-translational modifications, its evolutionary origin remains largely unexplored. Here, we performed a phylostratigraphic tracking of glycosylation machinery (GM) genes and their targets—glycosylated proteins—in a broad phylogenetic context. Our results show that the vast majority of human GM genes trace back to two evolutionary periods: the origin of all cellular organisms and the origin of all eukaryotes. This indicates that protein glycosylation is an ancient process likely common to all life, further elaborated in early eukaryotes. In contrast, human glycoproteins exhibited prominent enrichment signals in more recent evolutionary periods, suggesting an important role in the transition from metazoans to vertebrates. Focusing specifically on the N-glycosylation (NG) pathway, we noted that the majority of NG genes acting on the cytoplasmic side of the endoplasmic reticulum (ER) trace back to the origin of cellular organisms. This sharply contrasts with the rest of the NG pathway, which is oriented toward the ER lumen, where genes of eukaryotic origin predominate. In the Golgi, we also identified an analogous binary evolutionary origin of GM genes. We discuss these findings in the context of the evolutionary emergence of the eukaryotic endomembrane system and propose that the ER evolved through the invagination of a prokaryotic cell membrane containing an NG pathway.\",\"PeriodicalId\":11783,\"journal\":{\"name\":\"Engineering\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":10.1000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1016/j.eng.2025.06.039\",\"RegionNum\":1,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1016/j.eng.2025.06.039","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
Contrasting Macroevolutionary Patterns in the Human N-Glycosylation Pathway
Building on coding mutations and splicing variants, post-translational modifications add a final layer to protein diversity that operates at developmental and physiological timescales. Although protein glycosylation is one of the most common post-translational modifications, its evolutionary origin remains largely unexplored. Here, we performed a phylostratigraphic tracking of glycosylation machinery (GM) genes and their targets—glycosylated proteins—in a broad phylogenetic context. Our results show that the vast majority of human GM genes trace back to two evolutionary periods: the origin of all cellular organisms and the origin of all eukaryotes. This indicates that protein glycosylation is an ancient process likely common to all life, further elaborated in early eukaryotes. In contrast, human glycoproteins exhibited prominent enrichment signals in more recent evolutionary periods, suggesting an important role in the transition from metazoans to vertebrates. Focusing specifically on the N-glycosylation (NG) pathway, we noted that the majority of NG genes acting on the cytoplasmic side of the endoplasmic reticulum (ER) trace back to the origin of cellular organisms. This sharply contrasts with the rest of the NG pathway, which is oriented toward the ER lumen, where genes of eukaryotic origin predominate. In the Golgi, we also identified an analogous binary evolutionary origin of GM genes. We discuss these findings in the context of the evolutionary emergence of the eukaryotic endomembrane system and propose that the ER evolved through the invagination of a prokaryotic cell membrane containing an NG pathway.
期刊介绍:
Engineering, an international open-access journal initiated by the Chinese Academy of Engineering (CAE) in 2015, serves as a distinguished platform for disseminating cutting-edge advancements in engineering R&D, sharing major research outputs, and highlighting key achievements worldwide. The journal's objectives encompass reporting progress in engineering science, fostering discussions on hot topics, addressing areas of interest, challenges, and prospects in engineering development, while considering human and environmental well-being and ethics in engineering. It aims to inspire breakthroughs and innovations with profound economic and social significance, propelling them to advanced international standards and transforming them into a new productive force. Ultimately, this endeavor seeks to bring about positive changes globally, benefit humanity, and shape a new future.