基于数据驱动系统效应模型的三维U-Net神经网络再电离信号纪元提取

Li-Yang Gao, Léon V. E. Koopmans, Florent G. Mertens, Satyapan Munshi, Yichao Li, Stefanie A. Brackenhoff, Emilio Ceccotti, J. Kariuki Chege, Anshuman Acharya, Raghunath Ghara, Sambit K. Giri, Ilian T. Iliev, Garrelt Mellema and Xin Zhang
{"title":"基于数据驱动系统效应模型的三维U-Net神经网络再电离信号纪元提取","authors":"Li-Yang Gao, Léon V. E. Koopmans, Florent G. Mertens, Satyapan Munshi, Yichao Li, Stefanie A. Brackenhoff, Emilio Ceccotti, J. Kariuki Chege, Anshuman Acharya, Raghunath Ghara, Sambit K. Giri, Ilian T. Iliev, Garrelt Mellema and Xin Zhang","doi":"10.3847/1538-4357/ade2dc","DOIUrl":null,"url":null,"abstract":"Neutral hydrogen serves as a crucial probe for the Cosmic Dawn and the Epoch of Reionization (EoR). Actual observations of the 21 cm signal often encounter challenges such as thermal noise and various systematic effects. To overcome these challenges, we simulate SKA-Low-depth images in the South Celestial Pole field and process them with a deep learning method. We utilized foreground residuals acquired by LOFAR during actual North Celestial Pole field observations, thermal and excess variances calculated via Gaussian process regression, and 21 cm signals generated with 21cmFAST for signal extraction tests. Our approach to overcome these foreground, thermal noise, and excess variance components employs a 3D U-Net neural network architecture for image analysis. When considering thermal noise corresponding to 1752 hr of integration time, U-Net provides reliable 2D power spectrum predictions, and robustness tests ensure that we get realistic EoR signals. Adding foreground residuals, however, causes inconsistencies below the horizon delay line. Lastly, evaluating both thermal noise and excess variances with observations up to 4380 hr and 13,140 hr ensures reliable power spectrum estimations within the EoR window and across nearly all scales, respectively. The incoherence of excess variances in the frequency direction can greatly affect deep learning to extract 21 cm signals.","PeriodicalId":501813,"journal":{"name":"The Astrophysical Journal","volume":"51 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Extracting the Epoch of Reionization Signal with 3D U-Net Neural Networks Using a Data-driven Systematic Effect Model\",\"authors\":\"Li-Yang Gao, Léon V. E. Koopmans, Florent G. Mertens, Satyapan Munshi, Yichao Li, Stefanie A. Brackenhoff, Emilio Ceccotti, J. Kariuki Chege, Anshuman Acharya, Raghunath Ghara, Sambit K. Giri, Ilian T. Iliev, Garrelt Mellema and Xin Zhang\",\"doi\":\"10.3847/1538-4357/ade2dc\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neutral hydrogen serves as a crucial probe for the Cosmic Dawn and the Epoch of Reionization (EoR). Actual observations of the 21 cm signal often encounter challenges such as thermal noise and various systematic effects. To overcome these challenges, we simulate SKA-Low-depth images in the South Celestial Pole field and process them with a deep learning method. We utilized foreground residuals acquired by LOFAR during actual North Celestial Pole field observations, thermal and excess variances calculated via Gaussian process regression, and 21 cm signals generated with 21cmFAST for signal extraction tests. Our approach to overcome these foreground, thermal noise, and excess variance components employs a 3D U-Net neural network architecture for image analysis. When considering thermal noise corresponding to 1752 hr of integration time, U-Net provides reliable 2D power spectrum predictions, and robustness tests ensure that we get realistic EoR signals. Adding foreground residuals, however, causes inconsistencies below the horizon delay line. Lastly, evaluating both thermal noise and excess variances with observations up to 4380 hr and 13,140 hr ensures reliable power spectrum estimations within the EoR window and across nearly all scales, respectively. The incoherence of excess variances in the frequency direction can greatly affect deep learning to extract 21 cm signals.\",\"PeriodicalId\":501813,\"journal\":{\"name\":\"The Astrophysical Journal\",\"volume\":\"51 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Astrophysical Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3847/1538-4357/ade2dc\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Astrophysical Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3847/1538-4357/ade2dc","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

中性氢是宇宙黎明和再电离时代(EoR)的关键探测器。对21厘米信号的实际观测经常遇到热噪声和各种系统效应等挑战。为了克服这些挑战,我们在南天极场模拟ska -低深度图像,并使用深度学习方法对其进行处理。我们利用LOFAR在实际北天极场观测中获取的前景残差、高斯过程回归计算的热方差和超额方差,以及21cmFAST生成的21cm信号进行信号提取试验。我们采用3D U-Net神经网络架构进行图像分析,以克服这些前景、热噪声和过量方差分量。当考虑到1752小时积分时间对应的热噪声时,U-Net提供可靠的2D功率谱预测,并且鲁棒性测试确保我们获得真实的EoR信号。然而,添加前景残差会导致地平线延迟线以下的不一致。最后,通过4380小时和13140小时的观测来评估热噪声和多余方差,可以确保在提高采收率窗口内和几乎所有尺度上分别获得可靠的功率谱估计。频率方向上多余方差的不相干性会极大地影响深度学习提取21 cm信号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Extracting the Epoch of Reionization Signal with 3D U-Net Neural Networks Using a Data-driven Systematic Effect Model
Neutral hydrogen serves as a crucial probe for the Cosmic Dawn and the Epoch of Reionization (EoR). Actual observations of the 21 cm signal often encounter challenges such as thermal noise and various systematic effects. To overcome these challenges, we simulate SKA-Low-depth images in the South Celestial Pole field and process them with a deep learning method. We utilized foreground residuals acquired by LOFAR during actual North Celestial Pole field observations, thermal and excess variances calculated via Gaussian process regression, and 21 cm signals generated with 21cmFAST for signal extraction tests. Our approach to overcome these foreground, thermal noise, and excess variance components employs a 3D U-Net neural network architecture for image analysis. When considering thermal noise corresponding to 1752 hr of integration time, U-Net provides reliable 2D power spectrum predictions, and robustness tests ensure that we get realistic EoR signals. Adding foreground residuals, however, causes inconsistencies below the horizon delay line. Lastly, evaluating both thermal noise and excess variances with observations up to 4380 hr and 13,140 hr ensures reliable power spectrum estimations within the EoR window and across nearly all scales, respectively. The incoherence of excess variances in the frequency direction can greatly affect deep learning to extract 21 cm signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信