水含量调制使选择性离子传输在二维MXene膜

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yaguang Zhu, Qinsi Xiong, Woo Cheol Jeon, Monika Blum, Fernando Camino, George C. Schatz, Kelsey B. Hatzell
{"title":"水含量调制使选择性离子传输在二维MXene膜","authors":"Yaguang Zhu, Qinsi Xiong, Woo Cheol Jeon, Monika Blum, Fernando Camino, George C. Schatz, Kelsey B. Hatzell","doi":"10.1073/pnas.2501017122","DOIUrl":null,"url":null,"abstract":"Separation membranes are critical for a range of processes, including but not limited to water desalination, chemical and fuel production, and recycling and recovery applications. Fundamentally, there are intrinsic trade-offs between permeability and selectivity. Local water organization and content can impact membrane structure (short- and long-range) in laminar transition metal carbide (MXene) membranes and impact selective ion permeation. Intercalation of chaotropic cesium (Cs <jats:inline-formula> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" display=\"inline\" overflow=\"scroll\"> <mml:msup> <mml:mrow/> <mml:mo>+</mml:mo> </mml:msup> </mml:math> </jats:inline-formula> ) ions within the layers reduces the water content in the membrane and at the surface which cannot be found in the intercalation of other ions. Additionally, 3D imaging using focused ion beam scanning electron microscopy showed fewer defects in the Cs-MXene membrane, due to reduced local water content, leading to more efficient ion sieving. X-ray diffraction and density functional theory calculations on the nanochannel structure demonstrated that the chaotropic ion results in the smallest nanochannel size and induces a stronger resistance to water-induced nanochannel swelling. With a narrower nanochannel, the Cs-MXene membrane limits ion transport pathways, resulting in more selective transport of lithium over other metal cations, as evidenced in both experiment and molecular dynamics simulations. Our findings highlight the potential for controlling the structural organization of 2D MXene membranes to enable on-demand transport of ions for diverse applications.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"23 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Water content modulation enables selective ion transport in 2D MXene membranes\",\"authors\":\"Yaguang Zhu, Qinsi Xiong, Woo Cheol Jeon, Monika Blum, Fernando Camino, George C. Schatz, Kelsey B. Hatzell\",\"doi\":\"10.1073/pnas.2501017122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Separation membranes are critical for a range of processes, including but not limited to water desalination, chemical and fuel production, and recycling and recovery applications. Fundamentally, there are intrinsic trade-offs between permeability and selectivity. Local water organization and content can impact membrane structure (short- and long-range) in laminar transition metal carbide (MXene) membranes and impact selective ion permeation. Intercalation of chaotropic cesium (Cs <jats:inline-formula> <mml:math xmlns:mml=\\\"http://www.w3.org/1998/Math/MathML\\\" display=\\\"inline\\\" overflow=\\\"scroll\\\"> <mml:msup> <mml:mrow/> <mml:mo>+</mml:mo> </mml:msup> </mml:math> </jats:inline-formula> ) ions within the layers reduces the water content in the membrane and at the surface which cannot be found in the intercalation of other ions. Additionally, 3D imaging using focused ion beam scanning electron microscopy showed fewer defects in the Cs-MXene membrane, due to reduced local water content, leading to more efficient ion sieving. X-ray diffraction and density functional theory calculations on the nanochannel structure demonstrated that the chaotropic ion results in the smallest nanochannel size and induces a stronger resistance to water-induced nanochannel swelling. With a narrower nanochannel, the Cs-MXene membrane limits ion transport pathways, resulting in more selective transport of lithium over other metal cations, as evidenced in both experiment and molecular dynamics simulations. Our findings highlight the potential for controlling the structural organization of 2D MXene membranes to enable on-demand transport of ions for diverse applications.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2501017122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2501017122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

分离膜对一系列工艺至关重要,包括但不限于海水淡化、化学和燃料生产以及回收和回收应用。从根本上说,渗透率和选择性之间存在内在的权衡。在层状过渡金属碳化物(MXene)膜中,局部水组织和含量会影响膜结构(短期和长期),并影响选择性离子渗透。在层内嵌入超向性铯离子减少了膜内和表面的含水量,这是其他离子嵌入所不能发现的。此外,使用聚焦离子束扫描电子显微镜的3D成像显示,由于局部含水量减少,Cs-MXene膜的缺陷更少,从而提高了离子筛分效率。x射线衍射和密度泛函理论对纳米通道结构的计算表明,向乱离子使纳米通道尺寸最小,并且对水诱导的纳米通道膨胀具有更强的抵抗能力。通过更窄的纳米通道,Cs-MXene膜限制了离子运输途径,导致锂比其他金属阳离子更具选择性的运输,这在实验和分子动力学模拟中都得到了证明。我们的研究结果强调了控制二维MXene膜的结构组织的潜力,以实现离子的按需运输,用于各种应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Water content modulation enables selective ion transport in 2D MXene membranes
Separation membranes are critical for a range of processes, including but not limited to water desalination, chemical and fuel production, and recycling and recovery applications. Fundamentally, there are intrinsic trade-offs between permeability and selectivity. Local water organization and content can impact membrane structure (short- and long-range) in laminar transition metal carbide (MXene) membranes and impact selective ion permeation. Intercalation of chaotropic cesium (Cs + ) ions within the layers reduces the water content in the membrane and at the surface which cannot be found in the intercalation of other ions. Additionally, 3D imaging using focused ion beam scanning electron microscopy showed fewer defects in the Cs-MXene membrane, due to reduced local water content, leading to more efficient ion sieving. X-ray diffraction and density functional theory calculations on the nanochannel structure demonstrated that the chaotropic ion results in the smallest nanochannel size and induces a stronger resistance to water-induced nanochannel swelling. With a narrower nanochannel, the Cs-MXene membrane limits ion transport pathways, resulting in more selective transport of lithium over other metal cations, as evidenced in both experiment and molecular dynamics simulations. Our findings highlight the potential for controlling the structural organization of 2D MXene membranes to enable on-demand transport of ions for diverse applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信