Kimberly A.W. Reid, Randy Sutio, Jack M. Ranani, Maksym Pavlenko, Brennah E. Slaney, Christophe Allais, Johnny W. Lee, Christopher Sandford
{"title":"用于羧酸室温直接酰胺化的双功能硼酸/磷(V)有机催化剂","authors":"Kimberly A.W. Reid, Randy Sutio, Jack M. Ranani, Maksym Pavlenko, Brennah E. Slaney, Christophe Allais, Johnny W. Lee, Christopher Sandford","doi":"10.1016/j.checat.2025.101460","DOIUrl":null,"url":null,"abstract":"The sustainable synthesis of amide bonds under mild conditions is a key green chemistry target for the pharmaceutical process industry and is highlighted as one of the ten goals of the American Chemical Society’s Green Chemistry Institute Pharmaceutical Roundtable. Here, we report an organocatalyst that can achieve the synthesis of amides at room temperature. The catalyst includes both boronic acid and phosphine oxide functionalities, which operate in concert to facilitate substrate activation. Unlike that of other arylboronic acid catalysts, the monomeric mechanism proceeds via a redox-neutral phosphorus(V) cycle, where the adjacent boronic acid is key to room-temperature activity.","PeriodicalId":53121,"journal":{"name":"Chem Catalysis","volume":"203 1","pages":""},"PeriodicalIF":11.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A bifunctional boronic acid/phosphorus(V) organocatalyst for the direct room-temperature amidation of carboxylic acids\",\"authors\":\"Kimberly A.W. Reid, Randy Sutio, Jack M. Ranani, Maksym Pavlenko, Brennah E. Slaney, Christophe Allais, Johnny W. Lee, Christopher Sandford\",\"doi\":\"10.1016/j.checat.2025.101460\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The sustainable synthesis of amide bonds under mild conditions is a key green chemistry target for the pharmaceutical process industry and is highlighted as one of the ten goals of the American Chemical Society’s Green Chemistry Institute Pharmaceutical Roundtable. Here, we report an organocatalyst that can achieve the synthesis of amides at room temperature. The catalyst includes both boronic acid and phosphine oxide functionalities, which operate in concert to facilitate substrate activation. Unlike that of other arylboronic acid catalysts, the monomeric mechanism proceeds via a redox-neutral phosphorus(V) cycle, where the adjacent boronic acid is key to room-temperature activity.\",\"PeriodicalId\":53121,\"journal\":{\"name\":\"Chem Catalysis\",\"volume\":\"203 1\",\"pages\":\"\"},\"PeriodicalIF\":11.5000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Chem Catalysis\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.checat.2025.101460\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chem Catalysis","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.checat.2025.101460","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
A bifunctional boronic acid/phosphorus(V) organocatalyst for the direct room-temperature amidation of carboxylic acids
The sustainable synthesis of amide bonds under mild conditions is a key green chemistry target for the pharmaceutical process industry and is highlighted as one of the ten goals of the American Chemical Society’s Green Chemistry Institute Pharmaceutical Roundtable. Here, we report an organocatalyst that can achieve the synthesis of amides at room temperature. The catalyst includes both boronic acid and phosphine oxide functionalities, which operate in concert to facilitate substrate activation. Unlike that of other arylboronic acid catalysts, the monomeric mechanism proceeds via a redox-neutral phosphorus(V) cycle, where the adjacent boronic acid is key to room-temperature activity.
期刊介绍:
Chem Catalysis is a monthly journal that publishes innovative research on fundamental and applied catalysis, providing a platform for researchers across chemistry, chemical engineering, and related fields. It serves as a premier resource for scientists and engineers in academia and industry, covering heterogeneous, homogeneous, and biocatalysis. Emphasizing transformative methods and technologies, the journal aims to advance understanding, introduce novel catalysts, and connect fundamental insights to real-world applications for societal benefit.