Niklas Z. Jäntti, Paulina Moreno-Layseca, Megan R. Chastney, Michal Dibus, James R.W. Conway, Veli-Matti Leppänen, Hellyeh Hamidi, Kathrin Eylmann, Leticia Oliveira-Ferrer, Stefan Veltel, Johanna Ivaska
{"title":"EPLINα控制Rab21内体的整合素循环,驱动乳腺癌细胞迁移","authors":"Niklas Z. Jäntti, Paulina Moreno-Layseca, Megan R. Chastney, Michal Dibus, James R.W. Conway, Veli-Matti Leppänen, Hellyeh Hamidi, Kathrin Eylmann, Leticia Oliveira-Ferrer, Stefan Veltel, Johanna Ivaska","doi":"10.1016/j.devcel.2025.06.025","DOIUrl":null,"url":null,"abstract":"Epithelial protein lost in neoplasm (EPLIN), an actin-binding protein, has been described as both a tumor promoter and tumor suppressor in different cancers. The roles of EPLIN isoforms (α/β) remain largely unknown and could explain these opposing views. We observed distinct EPLIN isoform localization in breast cancer cells; EPLINα is recruited to actin in plasma membrane ruffles and endosomes, while EPLINβ resides on stress fibers. EPLINα localizes to early endosomes in an actin-dependent manner, where it interacts with Rab21, an established regulator of β1-integrin endosomal trafficking. This supports β1-integrin recycling and cell migration. Using proximity biotinylation (BioID), we identified coronin 1C as an EPLIN-proximal protein, which also localizes at Rab21-containing endosomes and controls integrin recycling downstream of EPLINα. EPLINα expression was linked to increased breast cancer cell motility, and a high EPLINα-to-EPLINβ ratio correlated with a mesenchymal phenotype in patient samples. Our work identifies previously unknown EPLIN-isoform-specific functions relevant to breast cancer and beyond.","PeriodicalId":11157,"journal":{"name":"Developmental cell","volume":"3 1","pages":""},"PeriodicalIF":8.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EPLINα controls integrin recycling from Rab21 endosomes to drive breast cancer cell migration\",\"authors\":\"Niklas Z. Jäntti, Paulina Moreno-Layseca, Megan R. Chastney, Michal Dibus, James R.W. Conway, Veli-Matti Leppänen, Hellyeh Hamidi, Kathrin Eylmann, Leticia Oliveira-Ferrer, Stefan Veltel, Johanna Ivaska\",\"doi\":\"10.1016/j.devcel.2025.06.025\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Epithelial protein lost in neoplasm (EPLIN), an actin-binding protein, has been described as both a tumor promoter and tumor suppressor in different cancers. The roles of EPLIN isoforms (α/β) remain largely unknown and could explain these opposing views. We observed distinct EPLIN isoform localization in breast cancer cells; EPLINα is recruited to actin in plasma membrane ruffles and endosomes, while EPLINβ resides on stress fibers. EPLINα localizes to early endosomes in an actin-dependent manner, where it interacts with Rab21, an established regulator of β1-integrin endosomal trafficking. This supports β1-integrin recycling and cell migration. Using proximity biotinylation (BioID), we identified coronin 1C as an EPLIN-proximal protein, which also localizes at Rab21-containing endosomes and controls integrin recycling downstream of EPLINα. EPLINα expression was linked to increased breast cancer cell motility, and a high EPLINα-to-EPLINβ ratio correlated with a mesenchymal phenotype in patient samples. Our work identifies previously unknown EPLIN-isoform-specific functions relevant to breast cancer and beyond.\",\"PeriodicalId\":11157,\"journal\":{\"name\":\"Developmental cell\",\"volume\":\"3 1\",\"pages\":\"\"},\"PeriodicalIF\":8.7000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Developmental cell\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1016/j.devcel.2025.06.025\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CELL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Developmental cell","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.devcel.2025.06.025","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
EPLINα controls integrin recycling from Rab21 endosomes to drive breast cancer cell migration
Epithelial protein lost in neoplasm (EPLIN), an actin-binding protein, has been described as both a tumor promoter and tumor suppressor in different cancers. The roles of EPLIN isoforms (α/β) remain largely unknown and could explain these opposing views. We observed distinct EPLIN isoform localization in breast cancer cells; EPLINα is recruited to actin in plasma membrane ruffles and endosomes, while EPLINβ resides on stress fibers. EPLINα localizes to early endosomes in an actin-dependent manner, where it interacts with Rab21, an established regulator of β1-integrin endosomal trafficking. This supports β1-integrin recycling and cell migration. Using proximity biotinylation (BioID), we identified coronin 1C as an EPLIN-proximal protein, which also localizes at Rab21-containing endosomes and controls integrin recycling downstream of EPLINα. EPLINα expression was linked to increased breast cancer cell motility, and a high EPLINα-to-EPLINβ ratio correlated with a mesenchymal phenotype in patient samples. Our work identifies previously unknown EPLIN-isoform-specific functions relevant to breast cancer and beyond.
期刊介绍:
Developmental Cell, established in 2001, is a comprehensive journal that explores a wide range of topics in cell and developmental biology. Our publication encompasses work across various disciplines within biology, with a particular emphasis on investigating the intersections between cell biology, developmental biology, and other related fields. Our primary objective is to present research conducted through a cell biological perspective, addressing the essential mechanisms governing cell function, cellular interactions, and responses to the environment. Moreover, we focus on understanding the collective behavior of cells, culminating in the formation of tissues, organs, and whole organisms, while also investigating the consequences of any malfunctions in these intricate processes.