Patricia Reis-Rodrigues, Mario J. Avellaneda, Nikola Canigova, Florian Gaertner, Kari Vaahtomeri, Michael Riedl, Ingrid de Vries, Jack Merrin, Robert Hauschild, Yoshinori Fukui, Alba Juanes Garcia, Michael Sixt
{"title":"迁移的免疫细胞全局协调突出力","authors":"Patricia Reis-Rodrigues, Mario J. Avellaneda, Nikola Canigova, Florian Gaertner, Kari Vaahtomeri, Michael Riedl, Ingrid de Vries, Jack Merrin, Robert Hauschild, Yoshinori Fukui, Alba Juanes Garcia, Michael Sixt","doi":"10.1038/s41590-025-02211-w","DOIUrl":null,"url":null,"abstract":"<p>Efficient immune responses rely on the capacity of leukocytes to traverse diverse and complex tissues. To meet such changing environmental conditions, leukocytes usually adopt an ameboid configuration, using their forward-positioned nucleus as a probe to identify and follow the path of least resistance among pre-existing pores. We show that, in dense environments where even the largest pores preclude free passage, leukocytes position their nucleus behind the centrosome and organelles. The local compression imposed on the cell body by its surroundings triggers assembly of a central F-actin pool, located between cell front and nucleus. Central actin pushes outward to transiently dilate a path for organelles and nucleus. Pools of central and front actin are tightly coupled and experimental depletion of the central pool enhances actin accumulation and protrusion formation at the cell front. Although this shifted balance speeds up cells in permissive environments, migration in restrictive environments is impaired, as the unleashed leading edge dissociates from the trapped cell body. Our findings establish an actin regulatory loop that balances path dilation with advancement of the leading edge to maintain cellular coherence.</p>","PeriodicalId":19032,"journal":{"name":"Nature Immunology","volume":"38 1","pages":""},"PeriodicalIF":27.7000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Migrating immune cells globally coordinate protrusive forces\",\"authors\":\"Patricia Reis-Rodrigues, Mario J. Avellaneda, Nikola Canigova, Florian Gaertner, Kari Vaahtomeri, Michael Riedl, Ingrid de Vries, Jack Merrin, Robert Hauschild, Yoshinori Fukui, Alba Juanes Garcia, Michael Sixt\",\"doi\":\"10.1038/s41590-025-02211-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Efficient immune responses rely on the capacity of leukocytes to traverse diverse and complex tissues. To meet such changing environmental conditions, leukocytes usually adopt an ameboid configuration, using their forward-positioned nucleus as a probe to identify and follow the path of least resistance among pre-existing pores. We show that, in dense environments where even the largest pores preclude free passage, leukocytes position their nucleus behind the centrosome and organelles. The local compression imposed on the cell body by its surroundings triggers assembly of a central F-actin pool, located between cell front and nucleus. Central actin pushes outward to transiently dilate a path for organelles and nucleus. Pools of central and front actin are tightly coupled and experimental depletion of the central pool enhances actin accumulation and protrusion formation at the cell front. Although this shifted balance speeds up cells in permissive environments, migration in restrictive environments is impaired, as the unleashed leading edge dissociates from the trapped cell body. Our findings establish an actin regulatory loop that balances path dilation with advancement of the leading edge to maintain cellular coherence.</p>\",\"PeriodicalId\":19032,\"journal\":{\"name\":\"Nature Immunology\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":27.7000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Immunology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1038/s41590-025-02211-w\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Immunology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1038/s41590-025-02211-w","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Efficient immune responses rely on the capacity of leukocytes to traverse diverse and complex tissues. To meet such changing environmental conditions, leukocytes usually adopt an ameboid configuration, using their forward-positioned nucleus as a probe to identify and follow the path of least resistance among pre-existing pores. We show that, in dense environments where even the largest pores preclude free passage, leukocytes position their nucleus behind the centrosome and organelles. The local compression imposed on the cell body by its surroundings triggers assembly of a central F-actin pool, located between cell front and nucleus. Central actin pushes outward to transiently dilate a path for organelles and nucleus. Pools of central and front actin are tightly coupled and experimental depletion of the central pool enhances actin accumulation and protrusion formation at the cell front. Although this shifted balance speeds up cells in permissive environments, migration in restrictive environments is impaired, as the unleashed leading edge dissociates from the trapped cell body. Our findings establish an actin regulatory loop that balances path dilation with advancement of the leading edge to maintain cellular coherence.
期刊介绍:
Nature Immunology is a monthly journal that publishes the highest quality research in all areas of immunology. The editorial decisions are made by a team of full-time professional editors. The journal prioritizes work that provides translational and/or fundamental insight into the workings of the immune system. It covers a wide range of topics including innate immunity and inflammation, development, immune receptors, signaling and apoptosis, antigen presentation, gene regulation and recombination, cellular and systemic immunity, vaccines, immune tolerance, autoimmunity, tumor immunology, and microbial immunopathology. In addition to publishing significant original research, Nature Immunology also includes comments, News and Views, research highlights, matters arising from readers, and reviews of the literature. The journal serves as a major conduit of top-quality information for the immunology community.