Charlie Hoy, Sarp Akçay, Jake Mac Uilliam, Jonathan E. Thompson
{"title":"引力波贝叶斯推理中模型精度的结合","authors":"Charlie Hoy, Sarp Akçay, Jake Mac Uilliam, Jonathan E. Thompson","doi":"10.1038/s41550-025-02579-7","DOIUrl":null,"url":null,"abstract":"<p>Inferring the properties of colliding black holes from gravitational wave observations is subject to systematic errors arising from modelling uncertainties. Although the accuracy of each model can be calculated through comparison to theoretical expectations from general relativity, Bayesian analyses are yet to incorporate this information. As such, a mixture model is typically used where results obtained with different gravitational wave models are combined with either equal weight or based on their relative Bayesian evidence. In this work we present a new method for incorporating the accuracy of several models into gravitational wave Bayesian analyses. By analysing simulated gravitational wave signals in zero noise, we show that our technique uses 30% less computational resources and more faithfully recovers the true parameters than existing techniques. We further apply our method to a real gravitational wave signal and, when assuming the binary black hole hypothesis, demonstrated that the source of GW191109_010717 has unequal component masses, with a 69% probability for the primary being above the maximum black hole mass from stellar collapse. We envisage that this method will become an essential tool for ground-based gravitational wave astronomy.</p>","PeriodicalId":18778,"journal":{"name":"Nature Astronomy","volume":"15 1","pages":""},"PeriodicalIF":12.9000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Incorporation of model accuracy in gravitational wave Bayesian inference\",\"authors\":\"Charlie Hoy, Sarp Akçay, Jake Mac Uilliam, Jonathan E. Thompson\",\"doi\":\"10.1038/s41550-025-02579-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Inferring the properties of colliding black holes from gravitational wave observations is subject to systematic errors arising from modelling uncertainties. Although the accuracy of each model can be calculated through comparison to theoretical expectations from general relativity, Bayesian analyses are yet to incorporate this information. As such, a mixture model is typically used where results obtained with different gravitational wave models are combined with either equal weight or based on their relative Bayesian evidence. In this work we present a new method for incorporating the accuracy of several models into gravitational wave Bayesian analyses. By analysing simulated gravitational wave signals in zero noise, we show that our technique uses 30% less computational resources and more faithfully recovers the true parameters than existing techniques. We further apply our method to a real gravitational wave signal and, when assuming the binary black hole hypothesis, demonstrated that the source of GW191109_010717 has unequal component masses, with a 69% probability for the primary being above the maximum black hole mass from stellar collapse. We envisage that this method will become an essential tool for ground-based gravitational wave astronomy.</p>\",\"PeriodicalId\":18778,\"journal\":{\"name\":\"Nature Astronomy\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":12.9000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s41550-025-02579-7\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Astronomy","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s41550-025-02579-7","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Incorporation of model accuracy in gravitational wave Bayesian inference
Inferring the properties of colliding black holes from gravitational wave observations is subject to systematic errors arising from modelling uncertainties. Although the accuracy of each model can be calculated through comparison to theoretical expectations from general relativity, Bayesian analyses are yet to incorporate this information. As such, a mixture model is typically used where results obtained with different gravitational wave models are combined with either equal weight or based on their relative Bayesian evidence. In this work we present a new method for incorporating the accuracy of several models into gravitational wave Bayesian analyses. By analysing simulated gravitational wave signals in zero noise, we show that our technique uses 30% less computational resources and more faithfully recovers the true parameters than existing techniques. We further apply our method to a real gravitational wave signal and, when assuming the binary black hole hypothesis, demonstrated that the source of GW191109_010717 has unequal component masses, with a 69% probability for the primary being above the maximum black hole mass from stellar collapse. We envisage that this method will become an essential tool for ground-based gravitational wave astronomy.
Nature AstronomyPhysics and Astronomy-Astronomy and Astrophysics
CiteScore
19.50
自引率
2.80%
发文量
252
期刊介绍:
Nature Astronomy, the oldest science, has played a significant role in the history of Nature. Throughout the years, pioneering discoveries such as the first quasar, exoplanet, and understanding of spiral nebulae have been reported in the journal. With the introduction of Nature Astronomy, the field now receives expanded coverage, welcoming research in astronomy, astrophysics, and planetary science. The primary objective is to encourage closer collaboration among researchers in these related areas.
Similar to other journals under the Nature brand, Nature Astronomy boasts a devoted team of professional editors, ensuring fairness and rigorous peer-review processes. The journal maintains high standards in copy-editing and production, ensuring timely publication and editorial independence.
In addition to original research, Nature Astronomy publishes a wide range of content, including Comments, Reviews, News and Views, Features, and Correspondence. This diverse collection covers various disciplines within astronomy and includes contributions from a diverse range of voices.