界面配位工程促进经济的Zr基卤化物电解质中Li离子的传导

IF 27.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Mengyi Wu, Han Su, Yu Zhong, Fanya Zhao, Jiangping Tu, Xiuli Wang
{"title":"界面配位工程促进经济的Zr基卤化物电解质中Li离子的传导","authors":"Mengyi Wu, Han Su, Yu Zhong, Fanya Zhao, Jiangping Tu, Xiuli Wang","doi":"10.1002/adma.202509928","DOIUrl":null,"url":null,"abstract":"Halide solid electrolytes (HSEs) have seen rapid progress in the development of all‐solid‐state lithium batteries (ASSLBs), offering favorable lithium‐ion transport properties, broad electrochemical stability, and strong interfacial compatibility with high‐voltage oxide cathodes. However, developing HSEs that simultaneously offer high ionic conductivity and low cost remains a significant challenge. Most high‐conductivity halides rely on expensive metal elements, whereas cost‐effective Zr‐based halides are limited by their relatively low ionic conductivity. In this study, a new composite electrolyte (LA/LZCO) is developed via an interfacial coordination reaction between Zr‐based oxychlorides (LZCO) and Li<jats:sub>1.3</jats:sub>Al<jats:sub>0.3</jats:sub>Ti<jats:sub>1.7</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> (LATP). The coordination between PO<jats:sub>4</jats:sub><jats:sup>3−</jats:sup> groups in LATP and Zr<jats:sup>4+</jats:sup> in LZCO induces local structural disorder, promoting LZCO amorphization. As a result, the ionic conductivity of LA/LZCO composite electrolyte is enhanced by more than twofold compared to LZCO, reaching 2.81 mS cm<jats:sup>−1</jats:sup>, among one of the highest reported for Zr‐based halide electrolytes. When integrated into ASSLBs with NCM83125 cathodes, the composite electrolyte enables excellent cycling stability, with 92.4% and 87.5% capacity retention after 1000 cycles at 0.5 and 2 C under 4.25 V. Even at an elevated cut‐off voltage of 4.5 V, 85.1% capacity is retained after 380 cycles, highlighting the promise of this composite strategy for high‐energy, long‐life ASSLBs.","PeriodicalId":114,"journal":{"name":"Advanced Materials","volume":"1 1","pages":""},"PeriodicalIF":27.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Interfacial Coordination Engineering to Boost Li‐Ion Conduction in Economic Zr‐Based Halide Electrolytes\",\"authors\":\"Mengyi Wu, Han Su, Yu Zhong, Fanya Zhao, Jiangping Tu, Xiuli Wang\",\"doi\":\"10.1002/adma.202509928\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Halide solid electrolytes (HSEs) have seen rapid progress in the development of all‐solid‐state lithium batteries (ASSLBs), offering favorable lithium‐ion transport properties, broad electrochemical stability, and strong interfacial compatibility with high‐voltage oxide cathodes. However, developing HSEs that simultaneously offer high ionic conductivity and low cost remains a significant challenge. Most high‐conductivity halides rely on expensive metal elements, whereas cost‐effective Zr‐based halides are limited by their relatively low ionic conductivity. In this study, a new composite electrolyte (LA/LZCO) is developed via an interfacial coordination reaction between Zr‐based oxychlorides (LZCO) and Li<jats:sub>1.3</jats:sub>Al<jats:sub>0.3</jats:sub>Ti<jats:sub>1.7</jats:sub>(PO<jats:sub>4</jats:sub>)<jats:sub>3</jats:sub> (LATP). The coordination between PO<jats:sub>4</jats:sub><jats:sup>3−</jats:sup> groups in LATP and Zr<jats:sup>4+</jats:sup> in LZCO induces local structural disorder, promoting LZCO amorphization. As a result, the ionic conductivity of LA/LZCO composite electrolyte is enhanced by more than twofold compared to LZCO, reaching 2.81 mS cm<jats:sup>−1</jats:sup>, among one of the highest reported for Zr‐based halide electrolytes. When integrated into ASSLBs with NCM83125 cathodes, the composite electrolyte enables excellent cycling stability, with 92.4% and 87.5% capacity retention after 1000 cycles at 0.5 and 2 C under 4.25 V. Even at an elevated cut‐off voltage of 4.5 V, 85.1% capacity is retained after 380 cycles, highlighting the promise of this composite strategy for high‐energy, long‐life ASSLBs.\",\"PeriodicalId\":114,\"journal\":{\"name\":\"Advanced Materials\",\"volume\":\"1 1\",\"pages\":\"\"},\"PeriodicalIF\":27.4000,\"publicationDate\":\"2025-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adma.202509928\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adma.202509928","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

卤化物固体电解质(HSEs)在全固态锂电池(ASSLBs)的发展中取得了快速进展,具有良好的锂离子传输性能,广泛的电化学稳定性以及与高压氧化物阴极的强界面相容性。然而,开发同时提供高离子电导率和低成本的hse仍然是一个重大挑战。大多数高导电性卤化物依赖于昂贵的金属元素,而具有成本效益的Zr基卤化物则受到其相对较低的离子导电性的限制。本研究通过Zr基氧氯化物(LZCO)与Li1.3Al0.3Ti1.7(PO4)3 (LATP)的界面配位反应,制备了一种新型复合电解质LA/LZCO。LATP中的PO43−基团与LZCO中的Zr4+之间的配位导致了LZCO的局部结构紊乱,促进了LZCO的非晶化。结果表明,LA/LZCO复合电解质的离子电导率比LZCO提高了两倍以上,达到2.81 mS cm−1,是目前报道的Zr基卤化物电解质中离子电导率最高的电解质之一。当与NCM83125阴极集成到asslb时,复合电解质具有出色的循环稳定性,在0.5和2 C下4.25 V下循环1000次后,容量保持率分别为92.4%和87.5%。即使在4.5 V的高截止电压下,380次循环后仍能保持85.1%的容量,这突出了这种复合策略对高能、长寿命assb的承诺。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Interfacial Coordination Engineering to Boost Li‐Ion Conduction in Economic Zr‐Based Halide Electrolytes
Halide solid electrolytes (HSEs) have seen rapid progress in the development of all‐solid‐state lithium batteries (ASSLBs), offering favorable lithium‐ion transport properties, broad electrochemical stability, and strong interfacial compatibility with high‐voltage oxide cathodes. However, developing HSEs that simultaneously offer high ionic conductivity and low cost remains a significant challenge. Most high‐conductivity halides rely on expensive metal elements, whereas cost‐effective Zr‐based halides are limited by their relatively low ionic conductivity. In this study, a new composite electrolyte (LA/LZCO) is developed via an interfacial coordination reaction between Zr‐based oxychlorides (LZCO) and Li1.3Al0.3Ti1.7(PO4)3 (LATP). The coordination between PO43− groups in LATP and Zr4+ in LZCO induces local structural disorder, promoting LZCO amorphization. As a result, the ionic conductivity of LA/LZCO composite electrolyte is enhanced by more than twofold compared to LZCO, reaching 2.81 mS cm−1, among one of the highest reported for Zr‐based halide electrolytes. When integrated into ASSLBs with NCM83125 cathodes, the composite electrolyte enables excellent cycling stability, with 92.4% and 87.5% capacity retention after 1000 cycles at 0.5 and 2 C under 4.25 V. Even at an elevated cut‐off voltage of 4.5 V, 85.1% capacity is retained after 380 cycles, highlighting the promise of this composite strategy for high‐energy, long‐life ASSLBs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Materials
Advanced Materials 工程技术-材料科学:综合
CiteScore
43.00
自引率
4.10%
发文量
2182
审稿时长
2 months
期刊介绍: Advanced Materials, one of the world's most prestigious journals and the foundation of the Advanced portfolio, is the home of choice for best-in-class materials science for more than 30 years. Following this fast-growing and interdisciplinary field, we are considering and publishing the most important discoveries on any and all materials from materials scientists, chemists, physicists, engineers as well as health and life scientists and bringing you the latest results and trends in modern materials-related research every week.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信