Guohao Li, Jiale Fan, Jie Wang, Yingxinjie Wang, Chi Chen, Hailiang He, Kejian Tang, Zhenjun Wu, Nan Zhang, Xiuqiang Xie
{"title":"基于无缺陷Ti3C2Tx MXene的超高容量微涡层膜的电化学锌离子存储","authors":"Guohao Li, Jiale Fan, Jie Wang, Yingxinjie Wang, Chi Chen, Hailiang He, Kejian Tang, Zhenjun Wu, Nan Zhang, Xiuqiang Xie","doi":"10.1002/adfm.202514630","DOIUrl":null,"url":null,"abstract":"The practical deployment of electrochemical zinc‐ion storage devices in compact electronics requires electrodes with high volumetric energy density and structural integrity. Vacuum‐filtrated 2D conductive MXenes inherently support dense packing, ensuring the volumetric performance and structural robustness. However, their application is hindered by the intrinsic defects in MXenes and <jats:italic>c</jats:italic>‐axis ordering, both of which restrict ion transport and reversibility. Here, a facile lithium chloride (LiCl) treatment protocol before vacuum filtration process of Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic> Mxene is reported. This induces local wrinkling that disrupts long‐range stacking while preserving short‐range order along <jats:italic>c</jats:italic>‐axis of the free‐standing Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic> assemblies, thereby facilitating through‐plane ion diffusion without compromising the electrode density. Simultaneously, Li<jats:sup>+</jats:sup> passivates the defects of Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic>, thereby enhancing electrochemical reversibility. The free‐standing electrodes for electrochemical zinc‐ion storage deliver a record‐high volumetric capacitance of 560.8 F cm<jats:sup>−3</jats:sup>, retain 70% capacitance at 20 A g<jats:sup>−1</jats:sup>, and exhibit 100.9% retention over 50,000 cycles. Notably, a flexible device using the customized film electrode maintains performance under extreme deformation, achieving an energy density of 60.6 Wh L<jats:sup>−1</jats:sup> at an ultrahigh power density of 42,779 W L<jats:sup>−1</jats:sup>. This work offers a scalable, MXene‐focused strategy that bridges dense film assembly with ion‐accessible architecture, enabling advanced energy storage for size‐constrained and deformable devices.","PeriodicalId":112,"journal":{"name":"Advanced Functional Materials","volume":"12 1","pages":""},"PeriodicalIF":18.5000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mildly Turbostratic Films based on Defect‐Less Ti3C2Tx MXene with Ultrahigh Volumetric Capacitance for Electrochemical Zinc‐Ion Storage\",\"authors\":\"Guohao Li, Jiale Fan, Jie Wang, Yingxinjie Wang, Chi Chen, Hailiang He, Kejian Tang, Zhenjun Wu, Nan Zhang, Xiuqiang Xie\",\"doi\":\"10.1002/adfm.202514630\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The practical deployment of electrochemical zinc‐ion storage devices in compact electronics requires electrodes with high volumetric energy density and structural integrity. Vacuum‐filtrated 2D conductive MXenes inherently support dense packing, ensuring the volumetric performance and structural robustness. However, their application is hindered by the intrinsic defects in MXenes and <jats:italic>c</jats:italic>‐axis ordering, both of which restrict ion transport and reversibility. Here, a facile lithium chloride (LiCl) treatment protocol before vacuum filtration process of Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic> Mxene is reported. This induces local wrinkling that disrupts long‐range stacking while preserving short‐range order along <jats:italic>c</jats:italic>‐axis of the free‐standing Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic> assemblies, thereby facilitating through‐plane ion diffusion without compromising the electrode density. Simultaneously, Li<jats:sup>+</jats:sup> passivates the defects of Ti<jats:sub>3</jats:sub>C<jats:sub>2</jats:sub>T<jats:italic><jats:sub>x</jats:sub></jats:italic>, thereby enhancing electrochemical reversibility. The free‐standing electrodes for electrochemical zinc‐ion storage deliver a record‐high volumetric capacitance of 560.8 F cm<jats:sup>−3</jats:sup>, retain 70% capacitance at 20 A g<jats:sup>−1</jats:sup>, and exhibit 100.9% retention over 50,000 cycles. Notably, a flexible device using the customized film electrode maintains performance under extreme deformation, achieving an energy density of 60.6 Wh L<jats:sup>−1</jats:sup> at an ultrahigh power density of 42,779 W L<jats:sup>−1</jats:sup>. This work offers a scalable, MXene‐focused strategy that bridges dense film assembly with ion‐accessible architecture, enabling advanced energy storage for size‐constrained and deformable devices.\",\"PeriodicalId\":112,\"journal\":{\"name\":\"Advanced Functional Materials\",\"volume\":\"12 1\",\"pages\":\"\"},\"PeriodicalIF\":18.5000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Functional Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1002/adfm.202514630\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Functional Materials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1002/adfm.202514630","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在紧凑型电子设备中实际部署电化学锌离子存储装置需要具有高体积能量密度和结构完整性的电极。真空过滤的二维导电MXenes固有地支持致密填料,确保了体积性能和结构坚固性。然而,它们的应用受到MXenes和c轴有序的固有缺陷的阻碍,这两者都限制了离子传输和可逆性。本文报道了Ti3C2Tx Mxene真空过滤前的易溶氯化锂(LiCl)处理方案。这会导致局部起皱,破坏长距离堆叠,同时保持自由支撑Ti3C2Tx组件沿c轴的短程顺序,从而促进离子通过平面扩散而不影响电极密度。同时,Li+钝化了Ti3C2Tx的缺陷,从而增强了电化学可逆性。用于电化学锌离子存储的独立式电极提供了560.8 F cm−3的创纪录高容量电容,在20 ag−1时保持70%的电容,并且在50,000次循环中保持100.9%的容量。值得注意的是,使用定制薄膜电极的柔性器件在极端变形下保持了性能,在42,779 W L−1的超高功率密度下实现了60.6 Wh L−1的能量密度。这项工作提供了一种可扩展的,以MXene为重点的策略,将致密薄膜组装与离子可访问的架构连接起来,为尺寸受限和可变形的设备实现先进的能量存储。
Mildly Turbostratic Films based on Defect‐Less Ti3C2Tx MXene with Ultrahigh Volumetric Capacitance for Electrochemical Zinc‐Ion Storage
The practical deployment of electrochemical zinc‐ion storage devices in compact electronics requires electrodes with high volumetric energy density and structural integrity. Vacuum‐filtrated 2D conductive MXenes inherently support dense packing, ensuring the volumetric performance and structural robustness. However, their application is hindered by the intrinsic defects in MXenes and c‐axis ordering, both of which restrict ion transport and reversibility. Here, a facile lithium chloride (LiCl) treatment protocol before vacuum filtration process of Ti3C2Tx Mxene is reported. This induces local wrinkling that disrupts long‐range stacking while preserving short‐range order along c‐axis of the free‐standing Ti3C2Tx assemblies, thereby facilitating through‐plane ion diffusion without compromising the electrode density. Simultaneously, Li+ passivates the defects of Ti3C2Tx, thereby enhancing electrochemical reversibility. The free‐standing electrodes for electrochemical zinc‐ion storage deliver a record‐high volumetric capacitance of 560.8 F cm−3, retain 70% capacitance at 20 A g−1, and exhibit 100.9% retention over 50,000 cycles. Notably, a flexible device using the customized film electrode maintains performance under extreme deformation, achieving an energy density of 60.6 Wh L−1 at an ultrahigh power density of 42,779 W L−1. This work offers a scalable, MXene‐focused strategy that bridges dense film assembly with ion‐accessible architecture, enabling advanced energy storage for size‐constrained and deformable devices.
期刊介绍:
Firmly established as a top-tier materials science journal, Advanced Functional Materials reports breakthrough research in all aspects of materials science, including nanotechnology, chemistry, physics, and biology every week.
Advanced Functional Materials is known for its rapid and fair peer review, quality content, and high impact, making it the first choice of the international materials science community.