具有非对称四齿O3N1片段的非金属硅单原子催化剂,可实现安培级H2O2电合成

IF 12.1 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-07-14 DOI:10.1002/smll.202504777
Zhixing Mou, Yuewen Mu, Lijia Liu, Daili Cao, Shuai Chen, Wenjun Yan, Haiqing Zhou, Ting-Shan Chan, Lo-Yueh Chang, Junjie Guo, Xiujun Fan
{"title":"具有非对称四齿O3N1片段的非金属硅单原子催化剂,可实现安培级H2O2电合成","authors":"Zhixing Mou,&nbsp;Yuewen Mu,&nbsp;Lijia Liu,&nbsp;Daili Cao,&nbsp;Shuai Chen,&nbsp;Wenjun Yan,&nbsp;Haiqing Zhou,&nbsp;Ting-Shan Chan,&nbsp;Lo-Yueh Chang,&nbsp;Junjie Guo,&nbsp;Xiujun Fan","doi":"10.1002/smll.202504777","DOIUrl":null,"url":null,"abstract":"<p>The development of efficient and stable catalysts for scalable and sustainable hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) electrosynthesis via two-electron oxygen reduction reaction (2e-ORR) is of great significance to replace the high-pollution anthraquinone oxidation process. Herein, O/N dual-coordinated silicon (Si) single-atom catalysts (SACs) uniformly immobilized on N-doped graphene (SiO<sub>3</sub>-NC) are successfully synthesized using silicate as Si dopant via controllable solvothermal and nitridation processes. In the synthesize reaction, Si centers convert from Si–O<sub>3</sub> planar triangle to unsymmetrical Si–O<sub>3</sub>N<sub>1</sub> tetrahedron, which effectively modify the electronic distribution of the carbon matrix, providing high-density active sites for electrocatalytic H<sub>2</sub>O<sub>2</sub> production. SiO<sub>3</sub>-NC catalysts achieve industrial-relevant current densities for H<sub>2</sub>O<sub>2</sub> production with a record-high productivity of 63.69 mol h<sup>−1</sup> g<sub>cat.</sub><sup>−1</sup>, while maintaining exceptional Faradaic efficiencies and stability. In situ spectroscopic studies and theoretical calculations uncover that the unsymmetrically Si–O<sub>3</sub>N<sub>1</sub> configuration acts as an active center, which affords near-optimal binding strength for OOH* adsorption and accelerates the kinetics of H<sub>2</sub>O<sub>2</sub> formation, thus promoting 2e-ORR process.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 36","pages":""},"PeriodicalIF":12.1000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-Metal Silicon Single-Atom Catalysts with Unsymmetrically Tetradentate O3N1 Moiety Enabling Ampere-Level H2O2 Electrosynthesis\",\"authors\":\"Zhixing Mou,&nbsp;Yuewen Mu,&nbsp;Lijia Liu,&nbsp;Daili Cao,&nbsp;Shuai Chen,&nbsp;Wenjun Yan,&nbsp;Haiqing Zhou,&nbsp;Ting-Shan Chan,&nbsp;Lo-Yueh Chang,&nbsp;Junjie Guo,&nbsp;Xiujun Fan\",\"doi\":\"10.1002/smll.202504777\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The development of efficient and stable catalysts for scalable and sustainable hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) electrosynthesis via two-electron oxygen reduction reaction (2e-ORR) is of great significance to replace the high-pollution anthraquinone oxidation process. Herein, O/N dual-coordinated silicon (Si) single-atom catalysts (SACs) uniformly immobilized on N-doped graphene (SiO<sub>3</sub>-NC) are successfully synthesized using silicate as Si dopant via controllable solvothermal and nitridation processes. In the synthesize reaction, Si centers convert from Si–O<sub>3</sub> planar triangle to unsymmetrical Si–O<sub>3</sub>N<sub>1</sub> tetrahedron, which effectively modify the electronic distribution of the carbon matrix, providing high-density active sites for electrocatalytic H<sub>2</sub>O<sub>2</sub> production. SiO<sub>3</sub>-NC catalysts achieve industrial-relevant current densities for H<sub>2</sub>O<sub>2</sub> production with a record-high productivity of 63.69 mol h<sup>−1</sup> g<sub>cat.</sub><sup>−1</sup>, while maintaining exceptional Faradaic efficiencies and stability. In situ spectroscopic studies and theoretical calculations uncover that the unsymmetrically Si–O<sub>3</sub>N<sub>1</sub> configuration acts as an active center, which affords near-optimal binding strength for OOH* adsorption and accelerates the kinetics of H<sub>2</sub>O<sub>2</sub> formation, thus promoting 2e-ORR process.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 36\",\"pages\":\"\"},\"PeriodicalIF\":12.1000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202504777\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202504777","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

开发高效、稳定、可扩展、可持续的双电子氧还原反应(2e - ORR)电合成过氧化氢(H2O2)催化剂对替代高污染的蒽醌氧化法具有重要意义。本文以硅为掺杂剂,通过可控溶剂热和氮化工艺,成功合成了O/N双配位硅(Si)单原子催化剂(SACs),均匀固定在N掺杂石墨烯(sio2 - NC)上。在合成反应中,Si中心由Si - o3平面三角形转变为不对称的Si - o3n1四面体,这有效地改变了碳基体的电子分布,为电催化生成H2O2提供了高密度的活性位点。SiO3‐NC催化剂实现了工业相关的H2O2生产电流密度,具有63.69 mol h−1 gcat的高产率。−1,同时保持卓越的法拉第效率和稳定性。原位光谱研究和理论计算表明,不对称的Si-O3N1结构作为活性中心,为OOH*吸附提供了接近最佳的结合强度,加速了H2O2的形成动力学,从而促进了2e - ORR过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Non-Metal Silicon Single-Atom Catalysts with Unsymmetrically Tetradentate O3N1 Moiety Enabling Ampere-Level H2O2 Electrosynthesis

The development of efficient and stable catalysts for scalable and sustainable hydrogen peroxide (H2O2) electrosynthesis via two-electron oxygen reduction reaction (2e-ORR) is of great significance to replace the high-pollution anthraquinone oxidation process. Herein, O/N dual-coordinated silicon (Si) single-atom catalysts (SACs) uniformly immobilized on N-doped graphene (SiO3-NC) are successfully synthesized using silicate as Si dopant via controllable solvothermal and nitridation processes. In the synthesize reaction, Si centers convert from Si–O3 planar triangle to unsymmetrical Si–O3N1 tetrahedron, which effectively modify the electronic distribution of the carbon matrix, providing high-density active sites for electrocatalytic H2O2 production. SiO3-NC catalysts achieve industrial-relevant current densities for H2O2 production with a record-high productivity of 63.69 mol h−1 gcat.−1, while maintaining exceptional Faradaic efficiencies and stability. In situ spectroscopic studies and theoretical calculations uncover that the unsymmetrically Si–O3N1 configuration acts as an active center, which affords near-optimal binding strength for OOH* adsorption and accelerates the kinetics of H2O2 formation, thus promoting 2e-ORR process.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信