{"title":"基于crispr - cas9的剂量依赖性DNA损伤检测工具。","authors":"Valentyn Oksenych, Pavlo Petakh, Denis Kainov, Oleksandr Kamyshnyi","doi":"10.1111/febs.70186","DOIUrl":null,"url":null,"abstract":"<p><p>Auboiron et al. developed a CRISPR-Cas9-based system in yeast Saccharomyces cerevisiae that allows precise, dose-dependent induction of DNA double-strand breaks by targeting Ty retrotransposons. This system combines sequence specificity with control over break numbers (×1, ×15, or ×59), enabling a more detailed and precise study of DNA damage response. It revealed that the key DNA damage response kinase, Tel1, localizes to the nuclear periphery and forms multiple foci after induction of DNA double-strand breaks. The system also exposed limitations in Cas9 availability at higher break levels and offers a scalable platform for studying genome stability across organisms.</p>","PeriodicalId":94226,"journal":{"name":"The FEBS journal","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A CRISPR-Cas9-based tool for dose-dependent DNA damage detection.\",\"authors\":\"Valentyn Oksenych, Pavlo Petakh, Denis Kainov, Oleksandr Kamyshnyi\",\"doi\":\"10.1111/febs.70186\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Auboiron et al. developed a CRISPR-Cas9-based system in yeast Saccharomyces cerevisiae that allows precise, dose-dependent induction of DNA double-strand breaks by targeting Ty retrotransposons. This system combines sequence specificity with control over break numbers (×1, ×15, or ×59), enabling a more detailed and precise study of DNA damage response. It revealed that the key DNA damage response kinase, Tel1, localizes to the nuclear periphery and forms multiple foci after induction of DNA double-strand breaks. The system also exposed limitations in Cas9 availability at higher break levels and offers a scalable platform for studying genome stability across organisms.</p>\",\"PeriodicalId\":94226,\"journal\":{\"name\":\"The FEBS journal\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The FEBS journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1111/febs.70186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The FEBS journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/febs.70186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A CRISPR-Cas9-based tool for dose-dependent DNA damage detection.
Auboiron et al. developed a CRISPR-Cas9-based system in yeast Saccharomyces cerevisiae that allows precise, dose-dependent induction of DNA double-strand breaks by targeting Ty retrotransposons. This system combines sequence specificity with control over break numbers (×1, ×15, or ×59), enabling a more detailed and precise study of DNA damage response. It revealed that the key DNA damage response kinase, Tel1, localizes to the nuclear periphery and forms multiple foci after induction of DNA double-strand breaks. The system also exposed limitations in Cas9 availability at higher break levels and offers a scalable platform for studying genome stability across organisms.