Susu Xiao, Yuanxiang Wang, Shulin Pan, Min Mu, Bo Chen, Hui Li, Chenqian Feng, Rangrang Fan, Wei Yu, Bo Han, Nianyong Chen and Gang Guo
{"title":"铋功能化益生菌增强抗肿瘤放疗和免疫激活。","authors":"Susu Xiao, Yuanxiang Wang, Shulin Pan, Min Mu, Bo Chen, Hui Li, Chenqian Feng, Rangrang Fan, Wei Yu, Bo Han, Nianyong Chen and Gang Guo","doi":"10.1039/D5TB00825E","DOIUrl":null,"url":null,"abstract":"<p >Radiotherapy (RT) is a mainstay treatment modality for solid tumors, employing high-energy radiation to induce reactive oxygen species (ROS) generation and DNA damage. However, RT is limited by insufficient DNA damage and collateral damage to normal tissues. Developing next-generation nanoradio-sensitizers to enhance tumor radiosensitivity while sparing healthy tissues remains a significant challenge. Herein, We propose a versatile bio–nano hybrid therapeutic system (BPBR), comprising <em>Bifidobacterium infantis</em>, bismuth-based nanoparticles, and the toll-like receptor 7/8 agonist (Resiquimod, R848). <em>B. infantis</em> exhibits tumor hypoxia-targeting properties, enabling the targeted delivery of bismuth nanoparticles and R848 to the tumor site. Bismuth, a high-atomic-number metal, possesses a higher mass attenuation coefficient for X-rays, enhancing X-ray radiation energy deposition and inducing DNA damage. R848, an activator of toll-like receptor 7/8, triggers immune responses. The combination of BPBR and X-ray irradiation significantly suppressed tumor growth in mice. This versatile bio–nano hybrid therapeutic system holds considerable promise for clinical translation and provides valuable insights for the design and development of novel therapeutics.</p>","PeriodicalId":83,"journal":{"name":"Journal of Materials Chemistry B","volume":" 35","pages":" 10871-10885"},"PeriodicalIF":6.1000,"publicationDate":"2025-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Bismuth-functionalized probiotics for enhanced antitumor radiotherapy and immune activation†\",\"authors\":\"Susu Xiao, Yuanxiang Wang, Shulin Pan, Min Mu, Bo Chen, Hui Li, Chenqian Feng, Rangrang Fan, Wei Yu, Bo Han, Nianyong Chen and Gang Guo\",\"doi\":\"10.1039/D5TB00825E\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Radiotherapy (RT) is a mainstay treatment modality for solid tumors, employing high-energy radiation to induce reactive oxygen species (ROS) generation and DNA damage. However, RT is limited by insufficient DNA damage and collateral damage to normal tissues. Developing next-generation nanoradio-sensitizers to enhance tumor radiosensitivity while sparing healthy tissues remains a significant challenge. Herein, We propose a versatile bio–nano hybrid therapeutic system (BPBR), comprising <em>Bifidobacterium infantis</em>, bismuth-based nanoparticles, and the toll-like receptor 7/8 agonist (Resiquimod, R848). <em>B. infantis</em> exhibits tumor hypoxia-targeting properties, enabling the targeted delivery of bismuth nanoparticles and R848 to the tumor site. Bismuth, a high-atomic-number metal, possesses a higher mass attenuation coefficient for X-rays, enhancing X-ray radiation energy deposition and inducing DNA damage. R848, an activator of toll-like receptor 7/8, triggers immune responses. The combination of BPBR and X-ray irradiation significantly suppressed tumor growth in mice. This versatile bio–nano hybrid therapeutic system holds considerable promise for clinical translation and provides valuable insights for the design and development of novel therapeutics.</p>\",\"PeriodicalId\":83,\"journal\":{\"name\":\"Journal of Materials Chemistry B\",\"volume\":\" 35\",\"pages\":\" 10871-10885\"},\"PeriodicalIF\":6.1000,\"publicationDate\":\"2025-07-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Chemistry B\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00825e\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, BIOMATERIALS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Chemistry B","FirstCategoryId":"1","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/tb/d5tb00825e","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
Bismuth-functionalized probiotics for enhanced antitumor radiotherapy and immune activation†
Radiotherapy (RT) is a mainstay treatment modality for solid tumors, employing high-energy radiation to induce reactive oxygen species (ROS) generation and DNA damage. However, RT is limited by insufficient DNA damage and collateral damage to normal tissues. Developing next-generation nanoradio-sensitizers to enhance tumor radiosensitivity while sparing healthy tissues remains a significant challenge. Herein, We propose a versatile bio–nano hybrid therapeutic system (BPBR), comprising Bifidobacterium infantis, bismuth-based nanoparticles, and the toll-like receptor 7/8 agonist (Resiquimod, R848). B. infantis exhibits tumor hypoxia-targeting properties, enabling the targeted delivery of bismuth nanoparticles and R848 to the tumor site. Bismuth, a high-atomic-number metal, possesses a higher mass attenuation coefficient for X-rays, enhancing X-ray radiation energy deposition and inducing DNA damage. R848, an activator of toll-like receptor 7/8, triggers immune responses. The combination of BPBR and X-ray irradiation significantly suppressed tumor growth in mice. This versatile bio–nano hybrid therapeutic system holds considerable promise for clinical translation and provides valuable insights for the design and development of novel therapeutics.
期刊介绍:
Journal of Materials Chemistry A, B & C cover high quality studies across all fields of materials chemistry. The journals focus on those theoretical or experimental studies that report new understanding, applications, properties and synthesis of materials. Journal of Materials Chemistry A, B & C are separated by the intended application of the material studied. Broadly, applications in energy and sustainability are of interest to Journal of Materials Chemistry A, applications in biology and medicine are of interest to Journal of Materials Chemistry B, and applications in optical, magnetic and electronic devices are of interest to Journal of Materials Chemistry C.Journal of Materials Chemistry B is a Transformative Journal and Plan S compliant. Example topic areas within the scope of Journal of Materials Chemistry B are listed below. This list is neither exhaustive nor exclusive:
Antifouling coatings
Biocompatible materials
Bioelectronics
Bioimaging
Biomimetics
Biomineralisation
Bionics
Biosensors
Diagnostics
Drug delivery
Gene delivery
Immunobiology
Nanomedicine
Regenerative medicine & Tissue engineering
Scaffolds
Soft robotics
Stem cells
Therapeutic devices