一个atp激活的自级联纳米平台,用于通过肿瘤微环境重塑进行ROS/mPTT/饥饿三重治疗。

Jing Yu, Hao Gao, Huayu Zhang, Shenglei Che, Dan Su
{"title":"一个atp激活的自级联纳米平台,用于通过肿瘤微环境重塑进行ROS/mPTT/饥饿三重治疗。","authors":"Jing Yu, Hao Gao, Huayu Zhang, Shenglei Che, Dan Su","doi":"10.1039/d5tb00843c","DOIUrl":null,"url":null,"abstract":"<p><p>Iron-gallic acid chelate nanoparticles (Fe-GA NPs) have emerged as promising Fenton catalysts and drug carriers in oncology. However, their therapeutic efficacy remains constrained by tumor microenvironment (TME) limitations - suboptimal pH and insufficient endogenous hydrogen peroxide. To overcome these barriers, we engineered an ATP-responsive core-shell nanoarchitecture (GOx@Fe-GA) integrating glucose oxidase (GOx) with Fe-GA coordination networks. Upon encountering elevated ATP concentrations in tumor cells, the nanosystem undergoes programmed disassembly: released GOx depletes glucose to induce metabolic starvation while generating substantial H<sub>2</sub>O<sub>2</sub> and acidifying the TME, thereby creating ideal conditions for Fe-GA-mediated Fenton reactions. Simultaneously, Fe-GA acts as a photothermal agent under near-infrared irradiation, leading to mild hyperthermia that synergizes with reactive oxygen species (ROS) to overcome thermotolerance by disrupting heat shock protein (HSP70) defenses. Both <i>in vitro</i> and <i>in vivo</i> studies showed potent tumor suppression with minimal systemic toxicity. These studies establish GOx@Fe-GA as a self-enhancing therapeutic platform. Here, tumor-specific ATP triggers a cascading therapeutic amplification involving an ROS storm, metabolic deprivation, and photothermal sensitization.</p>","PeriodicalId":94089,"journal":{"name":"Journal of materials chemistry. B","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An ATP-activated self-cascade nanoplatform for ROS/mPTT/starvation tri-therapy through tumor microenvironment remodeling.\",\"authors\":\"Jing Yu, Hao Gao, Huayu Zhang, Shenglei Che, Dan Su\",\"doi\":\"10.1039/d5tb00843c\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Iron-gallic acid chelate nanoparticles (Fe-GA NPs) have emerged as promising Fenton catalysts and drug carriers in oncology. However, their therapeutic efficacy remains constrained by tumor microenvironment (TME) limitations - suboptimal pH and insufficient endogenous hydrogen peroxide. To overcome these barriers, we engineered an ATP-responsive core-shell nanoarchitecture (GOx@Fe-GA) integrating glucose oxidase (GOx) with Fe-GA coordination networks. Upon encountering elevated ATP concentrations in tumor cells, the nanosystem undergoes programmed disassembly: released GOx depletes glucose to induce metabolic starvation while generating substantial H<sub>2</sub>O<sub>2</sub> and acidifying the TME, thereby creating ideal conditions for Fe-GA-mediated Fenton reactions. Simultaneously, Fe-GA acts as a photothermal agent under near-infrared irradiation, leading to mild hyperthermia that synergizes with reactive oxygen species (ROS) to overcome thermotolerance by disrupting heat shock protein (HSP70) defenses. Both <i>in vitro</i> and <i>in vivo</i> studies showed potent tumor suppression with minimal systemic toxicity. These studies establish GOx@Fe-GA as a self-enhancing therapeutic platform. Here, tumor-specific ATP triggers a cascading therapeutic amplification involving an ROS storm, metabolic deprivation, and photothermal sensitization.</p>\",\"PeriodicalId\":94089,\"journal\":{\"name\":\"Journal of materials chemistry. B\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of materials chemistry. B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1039/d5tb00843c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of materials chemistry. B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1039/d5tb00843c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

铁-没食子酸螯合纳米颗粒(Fe-GA NPs)已成为肿瘤学中很有前途的Fenton催化剂和药物载体。然而,它们的治疗效果仍然受到肿瘤微环境(TME)限制-次优pH和内源性过氧化氢不足。为了克服这些障碍,我们设计了一种atp响应核壳纳米结构(GOx@Fe-GA),将葡萄糖氧化酶(GOx)与Fe-GA配位网络整合在一起。当遇到肿瘤细胞中ATP浓度升高时,纳米系统进行程序化分解:释放的GOx消耗葡萄糖诱导代谢性饥饿,同时产生大量H2O2并酸化TME,从而为fe - ga介导的Fenton反应创造理想条件。同时,Fe-GA在近红外照射下作为光热剂,与活性氧(ROS)协同作用,通过破坏热休克蛋白(HSP70)防御来克服热耐受性。体外和体内研究都显示出有效的肿瘤抑制作用和最小的全身毒性。这些研究建立了GOx@Fe-GA作为一个自我增强的治疗平台。在这里,肿瘤特异性ATP触发了包括ROS风暴、代谢剥夺和光热致敏的级联治疗放大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An ATP-activated self-cascade nanoplatform for ROS/mPTT/starvation tri-therapy through tumor microenvironment remodeling.

Iron-gallic acid chelate nanoparticles (Fe-GA NPs) have emerged as promising Fenton catalysts and drug carriers in oncology. However, their therapeutic efficacy remains constrained by tumor microenvironment (TME) limitations - suboptimal pH and insufficient endogenous hydrogen peroxide. To overcome these barriers, we engineered an ATP-responsive core-shell nanoarchitecture (GOx@Fe-GA) integrating glucose oxidase (GOx) with Fe-GA coordination networks. Upon encountering elevated ATP concentrations in tumor cells, the nanosystem undergoes programmed disassembly: released GOx depletes glucose to induce metabolic starvation while generating substantial H2O2 and acidifying the TME, thereby creating ideal conditions for Fe-GA-mediated Fenton reactions. Simultaneously, Fe-GA acts as a photothermal agent under near-infrared irradiation, leading to mild hyperthermia that synergizes with reactive oxygen species (ROS) to overcome thermotolerance by disrupting heat shock protein (HSP70) defenses. Both in vitro and in vivo studies showed potent tumor suppression with minimal systemic toxicity. These studies establish GOx@Fe-GA as a self-enhancing therapeutic platform. Here, tumor-specific ATP triggers a cascading therapeutic amplification involving an ROS storm, metabolic deprivation, and photothermal sensitization.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of materials chemistry. B
Journal of materials chemistry. B 化学科学, 工程与材料, 生命科学, 分析化学, 高分子组装与超分子结构, 高分子科学, 免疫生物学, 免疫学, 生化分析及生物传感, 组织工程学, 生物力学与组织工程学, 资源循环科学, 冶金与矿业, 生物医用高分子材料, 有机高分子材料, 金属材料的制备科学与跨学科应用基础, 金属材料, 样品前处理方法与技术, 有机分子功能材料化学, 有机化学
CiteScore
12.00
自引率
0.00%
发文量
0
审稿时长
1 months
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信