{"title":"Rocker系统与过表达RSPO1的HUVEC共培养通过快速球体形成增强原代肝细胞的长期存活和自我更新","authors":"Yuting He, Qin Liu, Yanyan Zhou, Ji Bao","doi":"10.1007/s13770-025-00736-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Porcine primary hepatocytes are vital for liver therapy due to their procurement ease and robust functions. However, they rapidly dedifferentiate in vitro, challenging large-scale maintenance. This study aims to enhance the long-term survival and self-renewal of primary porcine hepatocytes by generating spheroids using a rocker system and optimizing conditions with HUVECs and Roof plate-specific spondin 1 (RSPO1).</p><p><strong>Methods: </strong>Primary hepatocytes were co-cultured with HUVECs in a rocker system using serum-free medium to form spheroids, mimicking their native microenvironment. RSPO1 was added to the media to promote hepatocyte signaling and proliferation. Then pheroids were generated with HUVECs overexpressing RSPO1 (R-HUVECs). The effects of these conditions on the viability, hepatic function, and proliferation of hepatocytes were evaluated.</p><p><strong>Results: </strong>The 3D environment and RSPO1 synergistically enhanced hepatocyte proliferation and maintained essential liver functions long-term. Co-culture with HUVECs and R-HUVECs promoted spheroid formation, with spheroids surviving and functioning for 28 days.</p><p><strong>Conclusion: </strong>Large-scale cultured hepatocyte + R-HUVEC spheroids address in vitro challenges of scale, yield, and functional sustainability, promising advances in liver therapeutics and drug development.</p>","PeriodicalId":23126,"journal":{"name":"Tissue engineering and regenerative medicine","volume":" ","pages":""},"PeriodicalIF":4.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Enhancing Long-Term Survival and Self-Renewal of Primary Hepatocytes via Rapid Spheroid Formation Using Rocker System through Co-Culturing with HUVEC Over-Expressing RSPO1.\",\"authors\":\"Yuting He, Qin Liu, Yanyan Zhou, Ji Bao\",\"doi\":\"10.1007/s13770-025-00736-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Porcine primary hepatocytes are vital for liver therapy due to their procurement ease and robust functions. However, they rapidly dedifferentiate in vitro, challenging large-scale maintenance. This study aims to enhance the long-term survival and self-renewal of primary porcine hepatocytes by generating spheroids using a rocker system and optimizing conditions with HUVECs and Roof plate-specific spondin 1 (RSPO1).</p><p><strong>Methods: </strong>Primary hepatocytes were co-cultured with HUVECs in a rocker system using serum-free medium to form spheroids, mimicking their native microenvironment. RSPO1 was added to the media to promote hepatocyte signaling and proliferation. Then pheroids were generated with HUVECs overexpressing RSPO1 (R-HUVECs). The effects of these conditions on the viability, hepatic function, and proliferation of hepatocytes were evaluated.</p><p><strong>Results: </strong>The 3D environment and RSPO1 synergistically enhanced hepatocyte proliferation and maintained essential liver functions long-term. Co-culture with HUVECs and R-HUVECs promoted spheroid formation, with spheroids surviving and functioning for 28 days.</p><p><strong>Conclusion: </strong>Large-scale cultured hepatocyte + R-HUVEC spheroids address in vitro challenges of scale, yield, and functional sustainability, promising advances in liver therapeutics and drug development.</p>\",\"PeriodicalId\":23126,\"journal\":{\"name\":\"Tissue engineering and regenerative medicine\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.4000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Tissue engineering and regenerative medicine\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s13770-025-00736-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CELL & TISSUE ENGINEERING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Tissue engineering and regenerative medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s13770-025-00736-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CELL & TISSUE ENGINEERING","Score":null,"Total":0}
Enhancing Long-Term Survival and Self-Renewal of Primary Hepatocytes via Rapid Spheroid Formation Using Rocker System through Co-Culturing with HUVEC Over-Expressing RSPO1.
Background: Porcine primary hepatocytes are vital for liver therapy due to their procurement ease and robust functions. However, they rapidly dedifferentiate in vitro, challenging large-scale maintenance. This study aims to enhance the long-term survival and self-renewal of primary porcine hepatocytes by generating spheroids using a rocker system and optimizing conditions with HUVECs and Roof plate-specific spondin 1 (RSPO1).
Methods: Primary hepatocytes were co-cultured with HUVECs in a rocker system using serum-free medium to form spheroids, mimicking their native microenvironment. RSPO1 was added to the media to promote hepatocyte signaling and proliferation. Then pheroids were generated with HUVECs overexpressing RSPO1 (R-HUVECs). The effects of these conditions on the viability, hepatic function, and proliferation of hepatocytes were evaluated.
Results: The 3D environment and RSPO1 synergistically enhanced hepatocyte proliferation and maintained essential liver functions long-term. Co-culture with HUVECs and R-HUVECs promoted spheroid formation, with spheroids surviving and functioning for 28 days.
Conclusion: Large-scale cultured hepatocyte + R-HUVEC spheroids address in vitro challenges of scale, yield, and functional sustainability, promising advances in liver therapeutics and drug development.
期刊介绍:
Tissue Engineering and Regenerative Medicine (Tissue Eng Regen Med, TERM), the official journal of the Korean Tissue Engineering and Regenerative Medicine Society, is a publication dedicated to providing research- based solutions to issues related to human diseases. This journal publishes articles that report substantial information and original findings on tissue engineering, medical biomaterials, cells therapy, stem cell biology and regenerative medicine.