蜱生态和寄主寻找效率相互作用,以确定疾病风险:心水动力学模型。

IF 2.4 3区 医学 Q2 PARASITOLOGY
Adam M Fisher, Hannah Rose Vineer
{"title":"蜱生态和寄主寻找效率相互作用,以确定疾病风险:心水动力学模型。","authors":"Adam M Fisher, Hannah Rose Vineer","doi":"10.1017/S0031182025100553","DOIUrl":null,"url":null,"abstract":"<p><p>Heartwater is a tick-borne disease (TBD) of wild and livestock ruminants that threatens food security and the economy throughout much of Africa. Furthermore, the geographic range of heartwater is expanding and is predicted to continue doing so. Despite this, our understanding of heartwater dynamics lags far behind that of many other TBDs. We are therefore limited in our ability to design effective disease control strategies. In this study, we derive and analyse a mathematical model of heartwater dynamics. We analyse our model to predict the most influential parameters for disease risk, both in terms of new outbreaks and in heartwater-endemic regions. We show that the host-finding efficiency of ticks is the most influential parameter affecting outbreak risk. Also, outbreak risk is highly sensitive to the impact of the heartwater pathogen on tick fitness - a previously unexplored concept for any TBD system. In areas where heartwater is established, we show that disease can be controlled via enzootic stability (prolonged host immunity attained via frequent pathogen exposure). However, the maintenance of enzootic stability was dependent on several ecological and physiological parameters. Regarding practical output, we suggest prioritizing tick control measures during periods when ticks are most active in terms of dispersing towards hosts, so as to mitigate heightened outbreak risk. In addition, given the specificity of conditions required for enzootic stability, we caution against relying solely on enzootic stability for long-term heartwater protection. More broadly, our study highlights important tick life history parameters that have been neglected by previous TBD models.</p>","PeriodicalId":19967,"journal":{"name":"Parasitology","volume":" ","pages":"1-11"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Tick ecology and host-finding efficiency interact to determine disease risk: a model of heartwater dynamics.\",\"authors\":\"Adam M Fisher, Hannah Rose Vineer\",\"doi\":\"10.1017/S0031182025100553\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Heartwater is a tick-borne disease (TBD) of wild and livestock ruminants that threatens food security and the economy throughout much of Africa. Furthermore, the geographic range of heartwater is expanding and is predicted to continue doing so. Despite this, our understanding of heartwater dynamics lags far behind that of many other TBDs. We are therefore limited in our ability to design effective disease control strategies. In this study, we derive and analyse a mathematical model of heartwater dynamics. We analyse our model to predict the most influential parameters for disease risk, both in terms of new outbreaks and in heartwater-endemic regions. We show that the host-finding efficiency of ticks is the most influential parameter affecting outbreak risk. Also, outbreak risk is highly sensitive to the impact of the heartwater pathogen on tick fitness - a previously unexplored concept for any TBD system. In areas where heartwater is established, we show that disease can be controlled via enzootic stability (prolonged host immunity attained via frequent pathogen exposure). However, the maintenance of enzootic stability was dependent on several ecological and physiological parameters. Regarding practical output, we suggest prioritizing tick control measures during periods when ticks are most active in terms of dispersing towards hosts, so as to mitigate heightened outbreak risk. In addition, given the specificity of conditions required for enzootic stability, we caution against relying solely on enzootic stability for long-term heartwater protection. More broadly, our study highlights important tick life history parameters that have been neglected by previous TBD models.</p>\",\"PeriodicalId\":19967,\"journal\":{\"name\":\"Parasitology\",\"volume\":\" \",\"pages\":\"1-11\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Parasitology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1017/S0031182025100553\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PARASITOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Parasitology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1017/S0031182025100553","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PARASITOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

心水病是一种野生和家畜反刍动物的蜱传疾病(TBD),威胁着非洲大部分地区的粮食安全和经济。此外,心脏水的地理范围正在扩大,预计将继续扩大。尽管如此,我们对心水动力学的理解远远落后于许多其他tbd。因此,我们设计有效疾病控制战略的能力有限。在这项研究中,我们推导并分析了心水动力学的数学模型。我们分析了我们的模型,以预测疾病风险的最具影响力的参数,无论是在新的爆发方面还是在心水流行地区。结果表明,蜱的寻宿主效率是影响疫情风险的最重要参数。此外,暴发风险对心水病原体对蜱虫适应性的影响高度敏感——这是任何TBD系统以前未探索的概念。在建立了心水的地区,我们表明疾病可以通过地方性动物稳定性(通过频繁接触病原体获得长期宿主免疫)得到控制。然而,地方性动物稳定性的维持依赖于几个生态和生理参数。在实际产出方面,我们建议在蜱虫向宿主扩散最活跃的时期优先采取蜱虫控制措施,以减轻疫情爆发的风险。此外,鉴于地方性稳定所需条件的特殊性,我们警告不要仅仅依赖地方性稳定来长期保护心脏水。更广泛地说,我们的研究强调了重要的蜱虫生活史参数,这些参数被以前的TBD模型所忽视。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Tick ecology and host-finding efficiency interact to determine disease risk: a model of heartwater dynamics.

Heartwater is a tick-borne disease (TBD) of wild and livestock ruminants that threatens food security and the economy throughout much of Africa. Furthermore, the geographic range of heartwater is expanding and is predicted to continue doing so. Despite this, our understanding of heartwater dynamics lags far behind that of many other TBDs. We are therefore limited in our ability to design effective disease control strategies. In this study, we derive and analyse a mathematical model of heartwater dynamics. We analyse our model to predict the most influential parameters for disease risk, both in terms of new outbreaks and in heartwater-endemic regions. We show that the host-finding efficiency of ticks is the most influential parameter affecting outbreak risk. Also, outbreak risk is highly sensitive to the impact of the heartwater pathogen on tick fitness - a previously unexplored concept for any TBD system. In areas where heartwater is established, we show that disease can be controlled via enzootic stability (prolonged host immunity attained via frequent pathogen exposure). However, the maintenance of enzootic stability was dependent on several ecological and physiological parameters. Regarding practical output, we suggest prioritizing tick control measures during periods when ticks are most active in terms of dispersing towards hosts, so as to mitigate heightened outbreak risk. In addition, given the specificity of conditions required for enzootic stability, we caution against relying solely on enzootic stability for long-term heartwater protection. More broadly, our study highlights important tick life history parameters that have been neglected by previous TBD models.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Parasitology
Parasitology 医学-寄生虫学
CiteScore
4.80
自引率
4.20%
发文量
280
审稿时长
3-8 weeks
期刊介绍: Parasitology is an important specialist journal covering the latest advances in the subject. It publishes original research and review papers on all aspects of parasitology and host-parasite relationships, including the latest discoveries in parasite biochemistry, molecular biology and genetics, ecology and epidemiology in the context of the biological, medical and veterinary sciences. Included in the subscription price are two special issues which contain reviews of current hot topics, one of which is the proceedings of the annual Symposia of the British Society for Parasitology, while the second, covering areas of significant topical interest, is commissioned by the editors and the editorial board.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信