{"title":"小鼠组织蛋白的温度和时间依赖性降解:通过质谱分析了解rna结合蛋白的稳定性。","authors":"Aiswarya Suresh, Nikhil Pallaprolu, Aishwarya Dande, Harish Kumar Pogula, Vipan Kumar Parihar and Ramalingam Peraman","doi":"10.1039/D5MO00020C","DOIUrl":null,"url":null,"abstract":"<p >In proteomics research, samples are frequently stored at −20 °C and −80 °C for extended periods, and assessing protein stability under these conditions is essential. We evaluated protein stability in healthy and diseased mice liver tissues stored at 4 °C, −20 °C, and −80 °C for 0, 7, 30, 90, and 180 days. A 10% variation in protein concentrations (by day 90, <em>p</em> < 0.001) was observed <em>via</em> BCA assay across all conditions. Untargeted proteomic analysis was performed using in-solution trypsin digestion and LC-Q-Orbitrap-MS/MS, with data processed using Proteome Discoverer 2.5. Proteins were shortlisted based on ≥2 unique peptides, FDR < 1%, and abundance ratio <em>p</em> ≤ 0.001. Differentially expressed proteins were identified using log 2 FC ± 2, <em>p</em>-adj ≤ 0.05. Protein degradation varied with storage conditions. In healthy tissues, 24, 11, and 8 proteins completely degraded at 4 °C, −20 °C, and −80 °C, respectively, after 7 days, compared to 8, 2, and 3 proteins in diseased tissues. The total number of significant proteins consistently identified across all time points in healthy samples was 2570, 2711, and 2617, and in diseased samples it was 2124, 2414, and 2353 at 4 °C, −20 °C, and −80 °C, respectively. RNA-binding proteins, such as La ribonucleoprotein 1B, Reticulophagy regulator 3, and Telomerase RNA component interacting RNase, were particularly prone to degradation across all conditions within 7 days. Notably, 18 degraded proteins were reported as biomarkers in disease conditions. Although −20 °C and −80 °C provided better preservation, residual instability persisted. Optimizing storage conditions is essential to prevent degradation, particularly for biomarker discovery studies.</p>","PeriodicalId":19065,"journal":{"name":"Molecular omics","volume":" 5","pages":" 479-495"},"PeriodicalIF":2.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature- and time-dependent degradation of mouse tissue proteins: insights into RNA-binding protein stability via mass spectrometry†\",\"authors\":\"Aiswarya Suresh, Nikhil Pallaprolu, Aishwarya Dande, Harish Kumar Pogula, Vipan Kumar Parihar and Ramalingam Peraman\",\"doi\":\"10.1039/D5MO00020C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >In proteomics research, samples are frequently stored at −20 °C and −80 °C for extended periods, and assessing protein stability under these conditions is essential. We evaluated protein stability in healthy and diseased mice liver tissues stored at 4 °C, −20 °C, and −80 °C for 0, 7, 30, 90, and 180 days. A 10% variation in protein concentrations (by day 90, <em>p</em> < 0.001) was observed <em>via</em> BCA assay across all conditions. Untargeted proteomic analysis was performed using in-solution trypsin digestion and LC-Q-Orbitrap-MS/MS, with data processed using Proteome Discoverer 2.5. Proteins were shortlisted based on ≥2 unique peptides, FDR < 1%, and abundance ratio <em>p</em> ≤ 0.001. Differentially expressed proteins were identified using log 2 FC ± 2, <em>p</em>-adj ≤ 0.05. Protein degradation varied with storage conditions. In healthy tissues, 24, 11, and 8 proteins completely degraded at 4 °C, −20 °C, and −80 °C, respectively, after 7 days, compared to 8, 2, and 3 proteins in diseased tissues. The total number of significant proteins consistently identified across all time points in healthy samples was 2570, 2711, and 2617, and in diseased samples it was 2124, 2414, and 2353 at 4 °C, −20 °C, and −80 °C, respectively. RNA-binding proteins, such as La ribonucleoprotein 1B, Reticulophagy regulator 3, and Telomerase RNA component interacting RNase, were particularly prone to degradation across all conditions within 7 days. Notably, 18 degraded proteins were reported as biomarkers in disease conditions. Although −20 °C and −80 °C provided better preservation, residual instability persisted. Optimizing storage conditions is essential to prevent degradation, particularly for biomarker discovery studies.</p>\",\"PeriodicalId\":19065,\"journal\":{\"name\":\"Molecular omics\",\"volume\":\" 5\",\"pages\":\" 479-495\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Molecular omics\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/mo/d5mo00020c\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMISTRY & MOLECULAR BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular omics","FirstCategoryId":"99","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mo/d5mo00020c","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
Temperature- and time-dependent degradation of mouse tissue proteins: insights into RNA-binding protein stability via mass spectrometry†
In proteomics research, samples are frequently stored at −20 °C and −80 °C for extended periods, and assessing protein stability under these conditions is essential. We evaluated protein stability in healthy and diseased mice liver tissues stored at 4 °C, −20 °C, and −80 °C for 0, 7, 30, 90, and 180 days. A 10% variation in protein concentrations (by day 90, p < 0.001) was observed via BCA assay across all conditions. Untargeted proteomic analysis was performed using in-solution trypsin digestion and LC-Q-Orbitrap-MS/MS, with data processed using Proteome Discoverer 2.5. Proteins were shortlisted based on ≥2 unique peptides, FDR < 1%, and abundance ratio p ≤ 0.001. Differentially expressed proteins were identified using log 2 FC ± 2, p-adj ≤ 0.05. Protein degradation varied with storage conditions. In healthy tissues, 24, 11, and 8 proteins completely degraded at 4 °C, −20 °C, and −80 °C, respectively, after 7 days, compared to 8, 2, and 3 proteins in diseased tissues. The total number of significant proteins consistently identified across all time points in healthy samples was 2570, 2711, and 2617, and in diseased samples it was 2124, 2414, and 2353 at 4 °C, −20 °C, and −80 °C, respectively. RNA-binding proteins, such as La ribonucleoprotein 1B, Reticulophagy regulator 3, and Telomerase RNA component interacting RNase, were particularly prone to degradation across all conditions within 7 days. Notably, 18 degraded proteins were reported as biomarkers in disease conditions. Although −20 °C and −80 °C provided better preservation, residual instability persisted. Optimizing storage conditions is essential to prevent degradation, particularly for biomarker discovery studies.
Molecular omicsBiochemistry, Genetics and Molecular Biology-Biochemistry
CiteScore
5.40
自引率
3.40%
发文量
91
期刊介绍:
Molecular Omics publishes high-quality research from across the -omics sciences.
Topics include, but are not limited to:
-omics studies to gain mechanistic insight into biological processes – for example, determining the mode of action of a drug or the basis of a particular phenotype, such as drought tolerance
-omics studies for clinical applications with validation, such as finding biomarkers for diagnostics or potential new drug targets
-omics studies looking at the sub-cellular make-up of cells – for example, the subcellular localisation of certain proteins or post-translational modifications or new imaging techniques
-studies presenting new methods and tools to support omics studies, including new spectroscopic/chromatographic techniques, chip-based/array technologies and new classification/data analysis techniques. New methods should be proven and demonstrate an advance in the field.
Molecular Omics only accepts articles of high importance and interest that provide significant new insight into important chemical or biological problems. This could be fundamental research that significantly increases understanding or research that demonstrates clear functional benefits.
Papers reporting new results that could be routinely predicted, do not show a significant improvement over known research, or are of interest only to the specialist in the area are not suitable for publication in Molecular Omics.