室温钠硫电池中过渡金属原子位诱导的P-d轨道杂化。

IF 17.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2025-06-11 eCollection Date: 2025-07-01 DOI:10.1093/nsr/nwaf241
Hao Tian, Yaojie Lei, Bing Sun, Cheng-Chieh Yang, Chi-Liang Chen, Tao Huang, Xiaoyue Zhang, Yong Chen, Ailing Song, Le Pang, Hongxia Wang, Chung-Li Dong, Sean C Smith, Wei-Hong Lai, Yun-Xiao Wang, Xin Tan, Hao Liu, Guoxiu Wang
{"title":"室温钠硫电池中过渡金属原子位诱导的P-d轨道杂化。","authors":"Hao Tian, Yaojie Lei, Bing Sun, Cheng-Chieh Yang, Chi-Liang Chen, Tao Huang, Xiaoyue Zhang, Yong Chen, Ailing Song, Le Pang, Hongxia Wang, Chung-Li Dong, Sean C Smith, Wei-Hong Lai, Yun-Xiao Wang, Xin Tan, Hao Liu, Guoxiu Wang","doi":"10.1093/nsr/nwaf241","DOIUrl":null,"url":null,"abstract":"<p><p>For energy storage applications involving sulfur redox reactions, uniformly dispersed metal sites in sulfur hosts serve as an effective approach to facilitate electron transfer during charge and discharge cycles. In this study, we exploited a facile method to construct transitional single-atom catalysts to overcome the kinetic limitations for electron transportation in room-temperature sodium-sulfur batteries. By the synergistic effect of polysulfide adsorption and p-d orbital hybridization between catalysts and intermediates, electron-donating and electron-capturing capabilities of different atomic sites towards sulfur redox reactions are systematically revealed. Remarkably, atomic Mn-N<sub>4</sub> active moiety structures possess abundant unfilled antibonding orbitals, promoting p-d hybridization and leading to superior sulfur conversion reactions. This work establishes a design paradigm for single-atom catalysts in metal-sulfur batteries by linking atomic-scale electronic features to macroscopic performance. This atomic-level engineering strategy paves the way for high-energy-density room-temperature sodium-sulfur batteries, with potential extensions to other multivalent sulfur-based energy storage systems.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 7","pages":"nwaf241"},"PeriodicalIF":17.1000,"publicationDate":"2025-06-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12247165/pdf/","citationCount":"0","resultStr":"{\"title\":\"p-d orbital hybridization induced by transition metal atom sites for room-temperature sodium-sulfur batteries.\",\"authors\":\"Hao Tian, Yaojie Lei, Bing Sun, Cheng-Chieh Yang, Chi-Liang Chen, Tao Huang, Xiaoyue Zhang, Yong Chen, Ailing Song, Le Pang, Hongxia Wang, Chung-Li Dong, Sean C Smith, Wei-Hong Lai, Yun-Xiao Wang, Xin Tan, Hao Liu, Guoxiu Wang\",\"doi\":\"10.1093/nsr/nwaf241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>For energy storage applications involving sulfur redox reactions, uniformly dispersed metal sites in sulfur hosts serve as an effective approach to facilitate electron transfer during charge and discharge cycles. In this study, we exploited a facile method to construct transitional single-atom catalysts to overcome the kinetic limitations for electron transportation in room-temperature sodium-sulfur batteries. By the synergistic effect of polysulfide adsorption and p-d orbital hybridization between catalysts and intermediates, electron-donating and electron-capturing capabilities of different atomic sites towards sulfur redox reactions are systematically revealed. Remarkably, atomic Mn-N<sub>4</sub> active moiety structures possess abundant unfilled antibonding orbitals, promoting p-d hybridization and leading to superior sulfur conversion reactions. This work establishes a design paradigm for single-atom catalysts in metal-sulfur batteries by linking atomic-scale electronic features to macroscopic performance. This atomic-level engineering strategy paves the way for high-energy-density room-temperature sodium-sulfur batteries, with potential extensions to other multivalent sulfur-based energy storage systems.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"12 7\",\"pages\":\"nwaf241\"},\"PeriodicalIF\":17.1000,\"publicationDate\":\"2025-06-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12247165/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwaf241\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwaf241","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

对于涉及硫氧化还原反应的储能应用,硫宿主中均匀分散的金属位是促进充放电循环中电子转移的有效途径。在这项研究中,我们利用一种简单的方法来构建过渡单原子催化剂,以克服室温钠硫电池中电子传输的动力学限制。通过多硫吸附和催化剂与中间体之间p-d轨道杂化的协同作用,系统地揭示了不同原子位置对硫氧化还原反应的给电子和捕获电子能力。值得注意的是,Mn-N4原子活性部分结构具有丰富的未填充反键轨道,促进p-d杂化并导致优越的硫转化反应。这项工作通过将原子尺度的电子特征与宏观性能联系起来,为金属硫电池中的单原子催化剂建立了一个设计范例。这种原子水平的工程策略为高能量密度的室温钠硫电池铺平了道路,并有可能扩展到其他多价硫基储能系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
p-d orbital hybridization induced by transition metal atom sites for room-temperature sodium-sulfur batteries.

For energy storage applications involving sulfur redox reactions, uniformly dispersed metal sites in sulfur hosts serve as an effective approach to facilitate electron transfer during charge and discharge cycles. In this study, we exploited a facile method to construct transitional single-atom catalysts to overcome the kinetic limitations for electron transportation in room-temperature sodium-sulfur batteries. By the synergistic effect of polysulfide adsorption and p-d orbital hybridization between catalysts and intermediates, electron-donating and electron-capturing capabilities of different atomic sites towards sulfur redox reactions are systematically revealed. Remarkably, atomic Mn-N4 active moiety structures possess abundant unfilled antibonding orbitals, promoting p-d hybridization and leading to superior sulfur conversion reactions. This work establishes a design paradigm for single-atom catalysts in metal-sulfur batteries by linking atomic-scale electronic features to macroscopic performance. This atomic-level engineering strategy paves the way for high-energy-density room-temperature sodium-sulfur batteries, with potential extensions to other multivalent sulfur-based energy storage systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信