一种对不溶性靛蓝染料具有高还原潜力的组织菌科细菌的分离。

IF 2 4区 环境科学与生态学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Zhihao Tu, Isao Yumoto
{"title":"一种对不溶性靛蓝染料具有高还原潜力的组织菌科细菌的分离。","authors":"Zhihao Tu, Isao Yumoto","doi":"10.1264/jsme2.ME24104","DOIUrl":null,"url":null,"abstract":"<p><p>In traditional indigo dyeing, water-insoluble indigo is anaerobically converted into soluble leuco-indigo via microbial reduction in alkaline dye suspensions, allowing its use as a fabric dye. Although various indigo-reducing bacteria have been isolated to date, culture-independent microbial community ana-lyses have suggested that bacteria belonging to uncultured clades also contribute to indigo reduction. Therefore, we aimed to isolate previously overlooked indigo-reducing bacteria using an unconventional culture method. We conducted enrichment cultures and single-colony isolation using a medium supplemented with sukumo, an indigo dye source derived from the composted leaves of indigo-containing plants, as the sole energy, carbon, and nitrogen sources. We isolated a previously uncultured bacterium belonging to the family Tissierellaceae, which had been predicted as a major indigo reducer in various indigo dyeing processes solely based on microbial community ana-lyses. The insoluble indigo-reducing activity of the Tissierellaceae isolate, strain TU-1 was significantly higher than that of known indigo-reducing bacteria. The addition of the culture supernatant of strain TU-1 enhanced the reduction of indigo powder by other indigo-reducing bacteria, with similar stimulatory effects to those of the insoluble electron mediator, anthraquinone. These results indicate that strain TU-1 possesses a high capacity for secreting electron mediators, conferring a significant reduction capacity for insoluble indigo. Further investigations, including the discovery of additional unknown indigo-reducing bacteria and the identification of the mediators they produce, will provide a more detailed understanding of the mechanisms underlying indigo reduction in practical dyeing processes.</p>","PeriodicalId":18482,"journal":{"name":"Microbes and Environments","volume":"40 3","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Isolation of a Tissierellaceae Bacterium Exhibiting a High Reduction Potential for Insoluble Indigo Dyes.\",\"authors\":\"Zhihao Tu, Isao Yumoto\",\"doi\":\"10.1264/jsme2.ME24104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In traditional indigo dyeing, water-insoluble indigo is anaerobically converted into soluble leuco-indigo via microbial reduction in alkaline dye suspensions, allowing its use as a fabric dye. Although various indigo-reducing bacteria have been isolated to date, culture-independent microbial community ana-lyses have suggested that bacteria belonging to uncultured clades also contribute to indigo reduction. Therefore, we aimed to isolate previously overlooked indigo-reducing bacteria using an unconventional culture method. We conducted enrichment cultures and single-colony isolation using a medium supplemented with sukumo, an indigo dye source derived from the composted leaves of indigo-containing plants, as the sole energy, carbon, and nitrogen sources. We isolated a previously uncultured bacterium belonging to the family Tissierellaceae, which had been predicted as a major indigo reducer in various indigo dyeing processes solely based on microbial community ana-lyses. The insoluble indigo-reducing activity of the Tissierellaceae isolate, strain TU-1 was significantly higher than that of known indigo-reducing bacteria. The addition of the culture supernatant of strain TU-1 enhanced the reduction of indigo powder by other indigo-reducing bacteria, with similar stimulatory effects to those of the insoluble electron mediator, anthraquinone. These results indicate that strain TU-1 possesses a high capacity for secreting electron mediators, conferring a significant reduction capacity for insoluble indigo. Further investigations, including the discovery of additional unknown indigo-reducing bacteria and the identification of the mediators they produce, will provide a more detailed understanding of the mechanisms underlying indigo reduction in practical dyeing processes.</p>\",\"PeriodicalId\":18482,\"journal\":{\"name\":\"Microbes and Environments\",\"volume\":\"40 3\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microbes and Environments\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1264/jsme2.ME24104\",\"RegionNum\":4,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microbes and Environments","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1264/jsme2.ME24104","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

在传统的靛蓝染色中,不溶于水的靛蓝在碱性染料悬浮液中通过微生物还原,厌氧转化为可溶的淡靛蓝,使其成为织物染料。尽管迄今为止已经分离出各种靛蓝还原细菌,但非培养微生物群落分析表明,属于未培养分支的细菌也有助于靛蓝还原。因此,我们旨在利用一种非常规的培养方法分离以前被忽视的靛蓝还原细菌。我们使用添加了sukumo的培养基进行了富集培养和单菌落分离,sukumo是一种靛蓝染料来源,来自于含靛蓝植物的堆肥叶片,作为唯一的能量、碳和氮源。我们分离了一种以前未培养的细菌,属于Tissierellaceae家族,仅根据微生物群落分析,它被预测为各种靛蓝染色过程中的主要靛蓝还原剂。菌株TU-1的不溶性靛蓝还原活性显著高于已知的靛蓝还原菌。菌株TU-1的培养上清的加入增强了其他靛蓝还原菌对靛蓝粉的还原作用,其刺激作用与不溶性电子介质蒽醌相似。结果表明,菌株TU-1具有较高的电子介质分泌能力,对不溶性靛蓝具有显著的还原能力。进一步的研究,包括发现其他未知的靛蓝还原细菌和鉴定它们产生的介质,将为实际染色过程中靛蓝还原的机制提供更详细的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Isolation of a Tissierellaceae Bacterium Exhibiting a High Reduction Potential for Insoluble Indigo Dyes.

In traditional indigo dyeing, water-insoluble indigo is anaerobically converted into soluble leuco-indigo via microbial reduction in alkaline dye suspensions, allowing its use as a fabric dye. Although various indigo-reducing bacteria have been isolated to date, culture-independent microbial community ana-lyses have suggested that bacteria belonging to uncultured clades also contribute to indigo reduction. Therefore, we aimed to isolate previously overlooked indigo-reducing bacteria using an unconventional culture method. We conducted enrichment cultures and single-colony isolation using a medium supplemented with sukumo, an indigo dye source derived from the composted leaves of indigo-containing plants, as the sole energy, carbon, and nitrogen sources. We isolated a previously uncultured bacterium belonging to the family Tissierellaceae, which had been predicted as a major indigo reducer in various indigo dyeing processes solely based on microbial community ana-lyses. The insoluble indigo-reducing activity of the Tissierellaceae isolate, strain TU-1 was significantly higher than that of known indigo-reducing bacteria. The addition of the culture supernatant of strain TU-1 enhanced the reduction of indigo powder by other indigo-reducing bacteria, with similar stimulatory effects to those of the insoluble electron mediator, anthraquinone. These results indicate that strain TU-1 possesses a high capacity for secreting electron mediators, conferring a significant reduction capacity for insoluble indigo. Further investigations, including the discovery of additional unknown indigo-reducing bacteria and the identification of the mediators they produce, will provide a more detailed understanding of the mechanisms underlying indigo reduction in practical dyeing processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microbes and Environments
Microbes and Environments 生物-生物工程与应用微生物
CiteScore
4.10
自引率
13.60%
发文量
66
审稿时长
3 months
期刊介绍: Microbial ecology in natural and engineered environments; Microbial degradation of xenobiotic compounds; Microbial processes in biogeochemical cycles; Microbial interactions and signaling with animals and plants; Interactions among microorganisms; Microorganisms related to public health; Phylogenetic and functional diversity of microbial communities; Genomics, metagenomics, and bioinformatics for microbiology; Application of microorganisms to agriculture, fishery, and industry; Molecular biology and biochemistry related to environmental microbiology; Methodology in general and environmental microbiology; Interdisciplinary research areas for microbial ecology (e.g., Astrobiology, and Origins of Life); Taxonomic description of novel microorganisms with ecological perspective; Physiology and metabolisms of microorganisms; Evolution of genes and microorganisms; Genome report of microorganisms with ecological perspective.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信