Marie Ménard, Hiroyuki Yoda, Nicole Nasholm, Megumi J Barata, Linyu Wang, Erin F Simonds, Edbert D Lu, Shannon Wong-Michalak, Lauren McHenry, Alvin Farrel, Rebecca Kaufman, Vanessa Lopez, Rebekah J Kennedy, G Esteban Fernandez, Hiroyuki Shimada, Liron D Grossmann, Shahab Asgharzadeh, John M Maris, W Clay Gustafson, William A Weiss
{"title":"骨髓靶向免疫疗法克服免疫逃避性神经母细胞瘤的抑制屏障。","authors":"Marie Ménard, Hiroyuki Yoda, Nicole Nasholm, Megumi J Barata, Linyu Wang, Erin F Simonds, Edbert D Lu, Shannon Wong-Michalak, Lauren McHenry, Alvin Farrel, Rebecca Kaufman, Vanessa Lopez, Rebekah J Kennedy, G Esteban Fernandez, Hiroyuki Shimada, Liron D Grossmann, Shahab Asgharzadeh, John M Maris, W Clay Gustafson, William A Weiss","doi":"10.1084/jem.20231417","DOIUrl":null,"url":null,"abstract":"<p><p>Neuroblastomas are highly heterogeneous tumors originating from neural crest-derived cells destined to form the sympathetic nervous system. Nearly half of high-risk tumors present with amplification of the MYCN proto-oncogene. Here, we describe a Mycn-driven, transplantable, non-germline, genetically engineered mouse model (Mycn-nGEMM). Mycn-nGEMM tumors recapitulate the immune-evasive, macrophage-rich tumor microenvironment of high-risk, MYCN-amplified human neuroblastoma. Treatment of tumor-bearing mice with anti-PD-L1, but not anti-PD-1 or anti-CTLA-4, inhibited tumor growth, profoundly remodeling the tumor microenvironment by depleting anti-inflammatory macrophages and increasing T cell infiltration. Surprisingly, while tumor cells showed low expression of PD-L1, anti-inflammatory macrophages from both murine and human neuroblastoma expressed PD-L1. We identified cytokines, including macrophage migration inhibitory factor, secreted by the Mycn-nGEMM cancer cells that drive expression of PD-L1 on macrophages. Combining anti-PD-L1 with CD40 agonist antibodies further improved survival in Mycn-nGEMM mice, demonstrating the potential for myeloid-targeting immunotherapies to overcome inhibitory barriers in immune-evasive neuroblastoma.</p>","PeriodicalId":15760,"journal":{"name":"Journal of Experimental Medicine","volume":"222 9","pages":""},"PeriodicalIF":12.6000,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263170/pdf/","citationCount":"0","resultStr":"{\"title\":\"Myeloid-targeting immunotherapies overcome inhibitory barriers in immune-evasive neuroblastoma.\",\"authors\":\"Marie Ménard, Hiroyuki Yoda, Nicole Nasholm, Megumi J Barata, Linyu Wang, Erin F Simonds, Edbert D Lu, Shannon Wong-Michalak, Lauren McHenry, Alvin Farrel, Rebecca Kaufman, Vanessa Lopez, Rebekah J Kennedy, G Esteban Fernandez, Hiroyuki Shimada, Liron D Grossmann, Shahab Asgharzadeh, John M Maris, W Clay Gustafson, William A Weiss\",\"doi\":\"10.1084/jem.20231417\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neuroblastomas are highly heterogeneous tumors originating from neural crest-derived cells destined to form the sympathetic nervous system. Nearly half of high-risk tumors present with amplification of the MYCN proto-oncogene. Here, we describe a Mycn-driven, transplantable, non-germline, genetically engineered mouse model (Mycn-nGEMM). Mycn-nGEMM tumors recapitulate the immune-evasive, macrophage-rich tumor microenvironment of high-risk, MYCN-amplified human neuroblastoma. Treatment of tumor-bearing mice with anti-PD-L1, but not anti-PD-1 or anti-CTLA-4, inhibited tumor growth, profoundly remodeling the tumor microenvironment by depleting anti-inflammatory macrophages and increasing T cell infiltration. Surprisingly, while tumor cells showed low expression of PD-L1, anti-inflammatory macrophages from both murine and human neuroblastoma expressed PD-L1. We identified cytokines, including macrophage migration inhibitory factor, secreted by the Mycn-nGEMM cancer cells that drive expression of PD-L1 on macrophages. Combining anti-PD-L1 with CD40 agonist antibodies further improved survival in Mycn-nGEMM mice, demonstrating the potential for myeloid-targeting immunotherapies to overcome inhibitory barriers in immune-evasive neuroblastoma.</p>\",\"PeriodicalId\":15760,\"journal\":{\"name\":\"Journal of Experimental Medicine\",\"volume\":\"222 9\",\"pages\":\"\"},\"PeriodicalIF\":12.6000,\"publicationDate\":\"2025-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12263170/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Experimental Medicine\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1084/jem.20231417\",\"RegionNum\":1,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/14 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"IMMUNOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Experimental Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1084/jem.20231417","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/14 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
Myeloid-targeting immunotherapies overcome inhibitory barriers in immune-evasive neuroblastoma.
Neuroblastomas are highly heterogeneous tumors originating from neural crest-derived cells destined to form the sympathetic nervous system. Nearly half of high-risk tumors present with amplification of the MYCN proto-oncogene. Here, we describe a Mycn-driven, transplantable, non-germline, genetically engineered mouse model (Mycn-nGEMM). Mycn-nGEMM tumors recapitulate the immune-evasive, macrophage-rich tumor microenvironment of high-risk, MYCN-amplified human neuroblastoma. Treatment of tumor-bearing mice with anti-PD-L1, but not anti-PD-1 or anti-CTLA-4, inhibited tumor growth, profoundly remodeling the tumor microenvironment by depleting anti-inflammatory macrophages and increasing T cell infiltration. Surprisingly, while tumor cells showed low expression of PD-L1, anti-inflammatory macrophages from both murine and human neuroblastoma expressed PD-L1. We identified cytokines, including macrophage migration inhibitory factor, secreted by the Mycn-nGEMM cancer cells that drive expression of PD-L1 on macrophages. Combining anti-PD-L1 with CD40 agonist antibodies further improved survival in Mycn-nGEMM mice, demonstrating the potential for myeloid-targeting immunotherapies to overcome inhibitory barriers in immune-evasive neuroblastoma.
期刊介绍:
Since its establishment in 1896, the Journal of Experimental Medicine (JEM) has steadfastly pursued the publication of enduring and exceptional studies in medical biology. In an era where numerous publishing groups are introducing specialized journals, we recognize the importance of offering a distinguished platform for studies that seamlessly integrate various disciplines within the pathogenesis field.
Our unique editorial system, driven by a commitment to exceptional author service, involves two collaborative groups of editors: professional editors with robust scientific backgrounds and full-time practicing scientists. Each paper undergoes evaluation by at least one editor from both groups before external review. Weekly editorial meetings facilitate comprehensive discussions on papers, incorporating external referee comments, and ensure swift decisions without unnecessary demands for extensive revisions.
Encompassing human studies and diverse in vivo experimental models of human disease, our focus within medical biology spans genetics, inflammation, immunity, infectious disease, cancer, vascular biology, metabolic disorders, neuroscience, and stem cell biology. We eagerly welcome reports ranging from atomic-level analyses to clinical interventions that unveil new mechanistic insights.