中华蓼内生真菌尖孢镰刀菌的分离与活性天然代谢产物的鉴定。

IF 2.3 4区 生物学 Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
Elham H Amr, Noha M Sorour, Ashraf S A El-Sayed, Marwa A Fayed, Ashraf F El-Baz
{"title":"中华蓼内生真菌尖孢镰刀菌的分离与活性天然代谢产物的鉴定。","authors":"Elham H Amr, Noha M Sorour, Ashraf S A El-Sayed, Marwa A Fayed, Ashraf F El-Baz","doi":"10.1007/s10123-025-00690-3","DOIUrl":null,"url":null,"abstract":"<p><p>Fungal endophytes inhabiting the medicinal plants have been considered repertoire for bioactive metabolites. In the current study, the medicinal plant Polygala sinaica was used for the first time as a source for endophytic fungi, which were screened for novel bioactive compounds. The potent biologically active fungal isolate was morphologically identified and molecularly verified using 18S rDNA sequencing as F. oxysporum with accession # OR616565. Two compounds were isolated using flash chromatography, identified using GC/MS and NMR techniques, and quantified using HPLC. Identified compounds were bis-(2-ethylhexyl) phthalate (DEHP) (1) and dibutyl phthalate (DBP) (2) isolated for the first time from F. oxysporum. The ethyl acetate extract of F. oxysporum exhibited potent activity against different multi-drug resistant Gram-negative and Gram-positive bacteria and Candida tropicalis. The production of DEHP was studied in different modified Wickerham media, using oat flakes, rice, and tomato as carbon sources, while corn steep liquor (CSL) and soy protein were used as nitrogen sources. CSL-containing medium exhibited the highest DEHP production by F. oxysporum at an initial pH of 7.2, 0.1% inoculum size after 15 days of incubation under static conditions at 28 °C. The biosynthesis of DEHP by F. oxysporum would serve as an excellent safe and eco-friendly source for its production to be used medicinally and industrially on a large scale with less toxic effects. The current data brings insights into the potency of Fusarium oxysporum, an endophyte of Polygala sinaica, for the production of bis-(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP).</p>","PeriodicalId":14318,"journal":{"name":"International Microbiology","volume":" ","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"First report on Fusarium oxysporum, an endophyte of Polygala sinaicum: isolation and identification of biologically active natural metabolites.\",\"authors\":\"Elham H Amr, Noha M Sorour, Ashraf S A El-Sayed, Marwa A Fayed, Ashraf F El-Baz\",\"doi\":\"10.1007/s10123-025-00690-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Fungal endophytes inhabiting the medicinal plants have been considered repertoire for bioactive metabolites. In the current study, the medicinal plant Polygala sinaica was used for the first time as a source for endophytic fungi, which were screened for novel bioactive compounds. The potent biologically active fungal isolate was morphologically identified and molecularly verified using 18S rDNA sequencing as F. oxysporum with accession # OR616565. Two compounds were isolated using flash chromatography, identified using GC/MS and NMR techniques, and quantified using HPLC. Identified compounds were bis-(2-ethylhexyl) phthalate (DEHP) (1) and dibutyl phthalate (DBP) (2) isolated for the first time from F. oxysporum. The ethyl acetate extract of F. oxysporum exhibited potent activity against different multi-drug resistant Gram-negative and Gram-positive bacteria and Candida tropicalis. The production of DEHP was studied in different modified Wickerham media, using oat flakes, rice, and tomato as carbon sources, while corn steep liquor (CSL) and soy protein were used as nitrogen sources. CSL-containing medium exhibited the highest DEHP production by F. oxysporum at an initial pH of 7.2, 0.1% inoculum size after 15 days of incubation under static conditions at 28 °C. The biosynthesis of DEHP by F. oxysporum would serve as an excellent safe and eco-friendly source for its production to be used medicinally and industrially on a large scale with less toxic effects. The current data brings insights into the potency of Fusarium oxysporum, an endophyte of Polygala sinaica, for the production of bis-(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP).</p>\",\"PeriodicalId\":14318,\"journal\":{\"name\":\"International Microbiology\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Microbiology\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1007/s10123-025-00690-3\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Microbiology","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1007/s10123-025-00690-3","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

栖息在药用植物中的真菌内生菌被认为是具有生物活性代谢产物的宿主。本研究首次将药用植物中华蓼属作为内生真菌的来源,对其进行了新的生物活性化合物筛选。通过18S rDNA测序对该真菌进行了形态鉴定和分子鉴定,鉴定菌株为氧化孢子菌(f.s oxysporum),鉴定号为OR616565。两种化合物采用闪蒸色谱分离,GC/MS和NMR鉴定,HPLC定量。其中,邻苯二甲酸二-(2-乙基己基)酯(DEHP)(1)和邻苯二甲酸二丁酯(DBP)(2)为首次从oxysporum中分离得到。尖孢镰刀菌乙酸乙酯提取物对多种耐药革兰氏阴性菌和革兰氏阳性菌及热带念珠菌均有较强的抗药活性。以燕麦片、大米和番茄为碳源,玉米浆(CSL)和大豆蛋白为氮源,研究了不同改性Wickerham培养基对DEHP的生产效果。含csl的培养基在28°C静态条件下培养15天后,在初始pH为7.2、接种量为0.1%的条件下,尖孢镰刀菌的DEHP产量最高。尖孢镰刀菌生物合成DEHP是一种安全、环保的生产原料,可大规模用于医药和工业生产,而且毒性作用小。目前的数据使人们对尖孢镰刀菌(Polygala sinaica的一种内生菌)生产邻苯二甲酸二(2-乙基己基)酯(DEHP)和邻苯二甲酸二丁酯(DBP)的效力有了更深的了解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First report on Fusarium oxysporum, an endophyte of Polygala sinaicum: isolation and identification of biologically active natural metabolites.

Fungal endophytes inhabiting the medicinal plants have been considered repertoire for bioactive metabolites. In the current study, the medicinal plant Polygala sinaica was used for the first time as a source for endophytic fungi, which were screened for novel bioactive compounds. The potent biologically active fungal isolate was morphologically identified and molecularly verified using 18S rDNA sequencing as F. oxysporum with accession # OR616565. Two compounds were isolated using flash chromatography, identified using GC/MS and NMR techniques, and quantified using HPLC. Identified compounds were bis-(2-ethylhexyl) phthalate (DEHP) (1) and dibutyl phthalate (DBP) (2) isolated for the first time from F. oxysporum. The ethyl acetate extract of F. oxysporum exhibited potent activity against different multi-drug resistant Gram-negative and Gram-positive bacteria and Candida tropicalis. The production of DEHP was studied in different modified Wickerham media, using oat flakes, rice, and tomato as carbon sources, while corn steep liquor (CSL) and soy protein were used as nitrogen sources. CSL-containing medium exhibited the highest DEHP production by F. oxysporum at an initial pH of 7.2, 0.1% inoculum size after 15 days of incubation under static conditions at 28 °C. The biosynthesis of DEHP by F. oxysporum would serve as an excellent safe and eco-friendly source for its production to be used medicinally and industrially on a large scale with less toxic effects. The current data brings insights into the potency of Fusarium oxysporum, an endophyte of Polygala sinaica, for the production of bis-(2-ethylhexyl) phthalate (DEHP) and dibutyl phthalate (DBP).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
International Microbiology
International Microbiology 生物-生物工程与应用微生物
CiteScore
5.50
自引率
3.20%
发文量
67
审稿时长
3 months
期刊介绍: International Microbiology publishes information on basic and applied microbiology for a worldwide readership. The journal publishes articles and short reviews based on original research, articles about microbiologists and their work and questions related to the history and sociology of this science. Also offered are perspectives, opinion, book reviews and editorials. A distinguishing feature of International Microbiology is its broadening of the term microbiology to include eukaryotic microorganisms.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信