当方言碰撞:社会经济混合如何影响语言使用。

IF 2.5 2区 计算机科学 Q1 MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
EPJ Data Science Pub Date : 2025-01-01 Epub Date: 2025-07-10 DOI:10.1140/epjds/s13688-025-00563-9
Thomas Louf, José J Ramasco, David Sánchez, Márton Karsai
{"title":"当方言碰撞:社会经济混合如何影响语言使用。","authors":"Thomas Louf, José J Ramasco, David Sánchez, Márton Karsai","doi":"10.1140/epjds/s13688-025-00563-9","DOIUrl":null,"url":null,"abstract":"<p><p>The socioeconomic background of people and how they use standard forms of language are not independent, as demonstrated in various sociolinguistic studies. However, the extent to which these correlations may be influenced by the mixing of people from different socioeconomic classes remains relatively unexplored from a quantitative perspective. In this work we leverage geotagged tweets and transferable computational methods to map deviations from standard English across eight UK metropolitan areas. We combine these data with high-resolution income maps to assign a proxy socioeconomic indicator to home-located users. Strikingly, we find a consistent pattern suggesting that the more different socioeconomic classes mix, the less interdependent the frequency of their departures from standard grammar and their income become. Further, we propose an agent-based model of linguistic variety adoption that sheds light on the mechanisms that produce the observations seen in the data.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1140/epjds/s13688-025-00563-9.</p>","PeriodicalId":11887,"journal":{"name":"EPJ Data Science","volume":"14 1","pages":"47"},"PeriodicalIF":2.5000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245997/pdf/","citationCount":"0","resultStr":"{\"title\":\"When dialects collide: how socioeconomic mixing affects language use.\",\"authors\":\"Thomas Louf, José J Ramasco, David Sánchez, Márton Karsai\",\"doi\":\"10.1140/epjds/s13688-025-00563-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The socioeconomic background of people and how they use standard forms of language are not independent, as demonstrated in various sociolinguistic studies. However, the extent to which these correlations may be influenced by the mixing of people from different socioeconomic classes remains relatively unexplored from a quantitative perspective. In this work we leverage geotagged tweets and transferable computational methods to map deviations from standard English across eight UK metropolitan areas. We combine these data with high-resolution income maps to assign a proxy socioeconomic indicator to home-located users. Strikingly, we find a consistent pattern suggesting that the more different socioeconomic classes mix, the less interdependent the frequency of their departures from standard grammar and their income become. Further, we propose an agent-based model of linguistic variety adoption that sheds light on the mechanisms that produce the observations seen in the data.</p><p><strong>Supplementary information: </strong>The online version contains supplementary material available at 10.1140/epjds/s13688-025-00563-9.</p>\",\"PeriodicalId\":11887,\"journal\":{\"name\":\"EPJ Data Science\",\"volume\":\"14 1\",\"pages\":\"47\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12245997/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EPJ Data Science\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1140/epjds/s13688-025-00563-9\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/10 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EPJ Data Science","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1140/epjds/s13688-025-00563-9","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/10 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"MATHEMATICS, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

正如各种社会语言学研究所证明的那样,人们的社会经济背景和他们如何使用标准形式的语言并不是独立的。然而,从定量的角度来看,这些相关性可能受到来自不同社会经济阶层的人的混合影响的程度仍然相对未被探索。在这项工作中,我们利用地理标记的推文和可转移的计算方法来绘制英国八个大都市地区与标准英语的偏差。我们将这些数据与高分辨率的收入地图结合起来,为家庭用户分配一个代理社会经济指标。引人注目的是,我们发现了一个一致的模式,表明不同的社会经济阶层混合得越多,他们偏离标准语法和收入的频率就越不相互依赖。此外,我们提出了一个基于主体的语言多样性采用模型,该模型揭示了产生数据中所见观察结果的机制。补充信息:在线版本包含补充资料,可在10.1140/epjds/s13688-025-00563-9获得。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
When dialects collide: how socioeconomic mixing affects language use.

The socioeconomic background of people and how they use standard forms of language are not independent, as demonstrated in various sociolinguistic studies. However, the extent to which these correlations may be influenced by the mixing of people from different socioeconomic classes remains relatively unexplored from a quantitative perspective. In this work we leverage geotagged tweets and transferable computational methods to map deviations from standard English across eight UK metropolitan areas. We combine these data with high-resolution income maps to assign a proxy socioeconomic indicator to home-located users. Strikingly, we find a consistent pattern suggesting that the more different socioeconomic classes mix, the less interdependent the frequency of their departures from standard grammar and their income become. Further, we propose an agent-based model of linguistic variety adoption that sheds light on the mechanisms that produce the observations seen in the data.

Supplementary information: The online version contains supplementary material available at 10.1140/epjds/s13688-025-00563-9.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
EPJ Data Science
EPJ Data Science MATHEMATICS, INTERDISCIPLINARY APPLICATIONS -
CiteScore
6.10
自引率
5.60%
发文量
53
审稿时长
13 weeks
期刊介绍: EPJ Data Science covers a broad range of research areas and applications and particularly encourages contributions from techno-socio-economic systems, where it comprises those research lines that now regard the digital “tracks” of human beings as first-order objects for scientific investigation. Topics include, but are not limited to, human behavior, social interaction (including animal societies), economic and financial systems, management and business networks, socio-technical infrastructure, health and environmental systems, the science of science, as well as general risk and crisis scenario forecasting up to and including policy advice.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信