Alan Y Hsu, Qingxiang Huang, Fei Liu, Arumugam Balasubramanian, Hongbo R Luo
{"title":"中性粒细胞死亡——不只是表面现象。","authors":"Alan Y Hsu, Qingxiang Huang, Fei Liu, Arumugam Balasubramanian, Hongbo R Luo","doi":"10.1016/j.exphem.2025.104857","DOIUrl":null,"url":null,"abstract":"<p><p>Neutrophils play an indispensable role in the innate immune system as the body's first line of defense against pathogens. These highly specialized cells are rapidly recruited to infection sites, where they execute a variety of critical functions essential for pathogen clearance. These functions include phagocytosis, degranulation, the release of antimicrobial peptides and reactive oxygen species (ROS), as well as the formation of neutrophil extracellular traps (NETs), which serve to directly neutralize pathogens or restrict their spread. Despite their abundance-accounting for 40-70% of total white blood cells in human circulation, neutrophils have a relatively short lifespan. To maintain immune homeostasis, approximately 1 billion neutrophils per kilogram of body weight are produced and cleared each day, a highly regulated and energy-intensive process. Neutrophil death is a highly heterogeneous process, with neutrophils undergoing different forms of cell death depending on the stimuli, signaling, and microenvironment. Even during aging or cell death, neutrophils continue to exert significant effects on the immune landscape. In this review, we discuss the dynamics of neutrophil turnover during homeostasis and inflammation, the diversity of mechanisms governing their death, and the multifaceted roles of neutrophils in modulating the immune environment both during and after their demise.</p>","PeriodicalId":12202,"journal":{"name":"Experimental hematology","volume":" ","pages":"104857"},"PeriodicalIF":2.5000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Neutrophil Death-More Than Meets The Eye.\",\"authors\":\"Alan Y Hsu, Qingxiang Huang, Fei Liu, Arumugam Balasubramanian, Hongbo R Luo\",\"doi\":\"10.1016/j.exphem.2025.104857\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Neutrophils play an indispensable role in the innate immune system as the body's first line of defense against pathogens. These highly specialized cells are rapidly recruited to infection sites, where they execute a variety of critical functions essential for pathogen clearance. These functions include phagocytosis, degranulation, the release of antimicrobial peptides and reactive oxygen species (ROS), as well as the formation of neutrophil extracellular traps (NETs), which serve to directly neutralize pathogens or restrict their spread. Despite their abundance-accounting for 40-70% of total white blood cells in human circulation, neutrophils have a relatively short lifespan. To maintain immune homeostasis, approximately 1 billion neutrophils per kilogram of body weight are produced and cleared each day, a highly regulated and energy-intensive process. Neutrophil death is a highly heterogeneous process, with neutrophils undergoing different forms of cell death depending on the stimuli, signaling, and microenvironment. Even during aging or cell death, neutrophils continue to exert significant effects on the immune landscape. In this review, we discuss the dynamics of neutrophil turnover during homeostasis and inflammation, the diversity of mechanisms governing their death, and the multifaceted roles of neutrophils in modulating the immune environment both during and after their demise.</p>\",\"PeriodicalId\":12202,\"journal\":{\"name\":\"Experimental hematology\",\"volume\":\" \",\"pages\":\"104857\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-07-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental hematology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.exphem.2025.104857\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"HEMATOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental hematology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.exphem.2025.104857","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"HEMATOLOGY","Score":null,"Total":0}
Neutrophils play an indispensable role in the innate immune system as the body's first line of defense against pathogens. These highly specialized cells are rapidly recruited to infection sites, where they execute a variety of critical functions essential for pathogen clearance. These functions include phagocytosis, degranulation, the release of antimicrobial peptides and reactive oxygen species (ROS), as well as the formation of neutrophil extracellular traps (NETs), which serve to directly neutralize pathogens or restrict their spread. Despite their abundance-accounting for 40-70% of total white blood cells in human circulation, neutrophils have a relatively short lifespan. To maintain immune homeostasis, approximately 1 billion neutrophils per kilogram of body weight are produced and cleared each day, a highly regulated and energy-intensive process. Neutrophil death is a highly heterogeneous process, with neutrophils undergoing different forms of cell death depending on the stimuli, signaling, and microenvironment. Even during aging or cell death, neutrophils continue to exert significant effects on the immune landscape. In this review, we discuss the dynamics of neutrophil turnover during homeostasis and inflammation, the diversity of mechanisms governing their death, and the multifaceted roles of neutrophils in modulating the immune environment both during and after their demise.
期刊介绍:
Experimental Hematology publishes new findings, methodologies, reviews and perspectives in all areas of hematology and immune cell formation on a monthly basis that may include Special Issues on particular topics of current interest. The overall goal is to report new insights into how normal blood cells are produced, how their production is normally regulated, mechanisms that contribute to hematological diseases and new approaches to their treatment. Specific topics may include relevant developmental and aging processes, stem cell biology, analyses of intrinsic and extrinsic regulatory mechanisms, in vitro behavior of primary cells, clonal tracking, molecular and omics analyses, metabolism, epigenetics, bioengineering approaches, studies in model organisms, novel clinical observations, transplantation biology and new therapeutic avenues.