Shams Sohel Islam, Vahid Sazgari, Jennifer N Graham, Orion Gerguri, Petr Král, Ikuya Maetsu, Hrishikesh Gopakumar, Markus Müller, Rajib Sarkar, Vadim Grinenko, Gediminas Simutis, Toni Shiroka, Rustem Khasanov, Marc Janoschek, John M Tranquada, Hans Henning Klauss, Tadashi Adachi, Hubertus Luetkens, Zurab Guguchia
{"title":"对比c轴和面内单轴应力对La1.885Ba0.115CuO4超导性和条纹序的影响","authors":"Shams Sohel Islam, Vahid Sazgari, Jennifer N Graham, Orion Gerguri, Petr Král, Ikuya Maetsu, Hrishikesh Gopakumar, Markus Müller, Rajib Sarkar, Vadim Grinenko, Gediminas Simutis, Toni Shiroka, Rustem Khasanov, Marc Janoschek, John M Tranquada, Hans Henning Klauss, Tadashi Adachi, Hubertus Luetkens, Zurab Guguchia","doi":"10.1038/s42005-025-02215-w","DOIUrl":null,"url":null,"abstract":"<p><p>The cuprate superconductor La<sub>2-<i>x</i></sub> Ba <sub><i>x</i></sub> CuO<sub>4</sub> (LBCO) near <i>x</i> = 0.125 is a striking example of intertwined electronic orders, where 3D superconductivity is anomalously suppressed, allowing spin and charge stripe order to develop. Understanding this interplay remains a key challenge in cuprates, highlighting the necessity of external tuning for deeper insight. While in-plane uniaxial stress enhances superconductivity and suppresses stripe order, the effects of <i>c</i>-axis compression remains largely unexplored. Here, we use muon spin rotation (<i>μ</i>SR) and AC susceptibility with an in situ piezoelectric stress device to investigate the spin-stripe order and superconductivity in LBCO-0.115 under <i>c</i>-axis compression. The measurements reveal a gradual suppression of the superconducting transition temperature (<i>T</i> <sub>c</sub>) with increasing <i>c</i>-axis stress, in stark contrast to the strong enhancement observed under in-plane stress. We further show that while in-plane stress rapidly reduces both the magnetic volume fraction (<i>V</i> <sub>m</sub>) and the spin-stripe ordering temperature (<i>T</i> <sub>so</sub>), <i>c</i>-axis compression has no effect, with <i>V</i> <sub>m</sub> and <i>T</i> <sub>so</sub> exhibiting an almost unchanged behavior up to the highest applied stress of 0.21 GPa. These findings demonstrate a strong anisotropy in stress response.</p>","PeriodicalId":10540,"journal":{"name":"Communications Physics","volume":"8 1","pages":"291"},"PeriodicalIF":5.8000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254039/pdf/","citationCount":"0","resultStr":"{\"title\":\"Contrasting <i>c</i>-axis and in-plane uniaxial stress effects on superconductivity and stripe order in La<sub>1.885</sub>Ba<sub>0.115</sub>CuO<sub>4</sub>.\",\"authors\":\"Shams Sohel Islam, Vahid Sazgari, Jennifer N Graham, Orion Gerguri, Petr Král, Ikuya Maetsu, Hrishikesh Gopakumar, Markus Müller, Rajib Sarkar, Vadim Grinenko, Gediminas Simutis, Toni Shiroka, Rustem Khasanov, Marc Janoschek, John M Tranquada, Hans Henning Klauss, Tadashi Adachi, Hubertus Luetkens, Zurab Guguchia\",\"doi\":\"10.1038/s42005-025-02215-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The cuprate superconductor La<sub>2-<i>x</i></sub> Ba <sub><i>x</i></sub> CuO<sub>4</sub> (LBCO) near <i>x</i> = 0.125 is a striking example of intertwined electronic orders, where 3D superconductivity is anomalously suppressed, allowing spin and charge stripe order to develop. Understanding this interplay remains a key challenge in cuprates, highlighting the necessity of external tuning for deeper insight. While in-plane uniaxial stress enhances superconductivity and suppresses stripe order, the effects of <i>c</i>-axis compression remains largely unexplored. Here, we use muon spin rotation (<i>μ</i>SR) and AC susceptibility with an in situ piezoelectric stress device to investigate the spin-stripe order and superconductivity in LBCO-0.115 under <i>c</i>-axis compression. The measurements reveal a gradual suppression of the superconducting transition temperature (<i>T</i> <sub>c</sub>) with increasing <i>c</i>-axis stress, in stark contrast to the strong enhancement observed under in-plane stress. We further show that while in-plane stress rapidly reduces both the magnetic volume fraction (<i>V</i> <sub>m</sub>) and the spin-stripe ordering temperature (<i>T</i> <sub>so</sub>), <i>c</i>-axis compression has no effect, with <i>V</i> <sub>m</sub> and <i>T</i> <sub>so</sub> exhibiting an almost unchanged behavior up to the highest applied stress of 0.21 GPa. These findings demonstrate a strong anisotropy in stress response.</p>\",\"PeriodicalId\":10540,\"journal\":{\"name\":\"Communications Physics\",\"volume\":\"8 1\",\"pages\":\"291\"},\"PeriodicalIF\":5.8000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12254039/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Communications Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1038/s42005-025-02215-w\",\"RegionNum\":1,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/11 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Communications Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1038/s42005-025-02215-w","RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/11 0:00:00","PubModel":"Epub","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
在x = 0.125附近的铜超导体La2-x Ba x CuO4 (LBCO)是一个引人注目的电子有序交织的例子,其中3D超导性被异常抑制,允许自旋和电荷条纹有序发展。理解这种相互作用仍然是cuprates的一个关键挑战,突出了外部调优以获得更深入洞察力的必要性。虽然平面内单轴应力增强了超导性并抑制了条纹顺序,但c轴压缩的影响仍未得到充分研究。本文利用μ子自旋自旋(μSR)和交流磁化率,在原位压电应力装置上研究了c轴压缩下LBCO-0.115的自旋条纹序和超导性。测量结果表明,随着c轴应力的增加,超导转变温度(T c)逐渐受到抑制,与平面内应力的强烈增强形成鲜明对比。我们进一步表明,虽然面内应力迅速降低了磁性体积分数(V m)和自旋条纹有序温度(T so),但c轴压缩没有影响,在最高施加应力0.21 GPa时,V m和T so表现出几乎不变的行为。这些发现表明应力响应具有很强的各向异性。
Contrasting c-axis and in-plane uniaxial stress effects on superconductivity and stripe order in La1.885Ba0.115CuO4.
The cuprate superconductor La2-x Ba x CuO4 (LBCO) near x = 0.125 is a striking example of intertwined electronic orders, where 3D superconductivity is anomalously suppressed, allowing spin and charge stripe order to develop. Understanding this interplay remains a key challenge in cuprates, highlighting the necessity of external tuning for deeper insight. While in-plane uniaxial stress enhances superconductivity and suppresses stripe order, the effects of c-axis compression remains largely unexplored. Here, we use muon spin rotation (μSR) and AC susceptibility with an in situ piezoelectric stress device to investigate the spin-stripe order and superconductivity in LBCO-0.115 under c-axis compression. The measurements reveal a gradual suppression of the superconducting transition temperature (Tc) with increasing c-axis stress, in stark contrast to the strong enhancement observed under in-plane stress. We further show that while in-plane stress rapidly reduces both the magnetic volume fraction (Vm) and the spin-stripe ordering temperature (Tso), c-axis compression has no effect, with Vm and Tso exhibiting an almost unchanged behavior up to the highest applied stress of 0.21 GPa. These findings demonstrate a strong anisotropy in stress response.
期刊介绍:
Communications Physics is an open access journal from Nature Research publishing high-quality research, reviews and commentary in all areas of the physical sciences. Research papers published by the journal represent significant advances bringing new insight to a specialized area of research in physics. We also aim to provide a community forum for issues of importance to all physicists, regardless of sub-discipline.
The scope of the journal covers all areas of experimental, applied, fundamental, and interdisciplinary physical sciences. Primary research published in Communications Physics includes novel experimental results, new techniques or computational methods that may influence the work of others in the sub-discipline. We also consider submissions from adjacent research fields where the central advance of the study is of interest to physicists, for example material sciences, physical chemistry and technologies.