用无量纲数来理解微通道中平行流动的界面传质。

IF 2.3 4区 工程技术 Q2 INSTRUMENTS & INSTRUMENTATION
Microfluidics and Nanofluidics Pub Date : 2025-01-01 Epub Date: 2025-07-09 DOI:10.1007/s10404-025-02828-1
Anand Sudha, Martin Rohde
{"title":"用无量纲数来理解微通道中平行流动的界面传质。","authors":"Anand Sudha, Martin Rohde","doi":"10.1007/s10404-025-02828-1","DOIUrl":null,"url":null,"abstract":"<p><p>Liquid-liquid Extraction has emerged as a major technique for radioisotope extraction in recent years. This technique is particularly advantageous in the microscale as the surface-volume ratio is much larger. Since some of these radioisotopes have short half-lives, parallel flow in the microscale is used to extract them as it eliminates the need for separating the two fluids. Though such a configuration has been experimentally studied, dimensionless numbers have not been employed to understand the mass transfer mechanisms. This study uses three dimensionless numbers-the Biot, Peclet and Damkohler numbers-to delve deeper into mass transfer with a chemical reaction at the interface. Mass transfer simulations are performed using a Finite Difference model to solve the 2D Convection-Diffusion Equation with a first-order reaction at the interface, and these numbers are varied. The Damkohler number was observed to have the maximal impact on the extraction efficiency, and this was confirmed to be the case when the extraction efficiency didn't change much as long as the Damkohler number was kept constant. In general, a higher Damkohler number results in a higher extraction efficiency and a correlation was proposed to quantify this influence.</p>","PeriodicalId":706,"journal":{"name":"Microfluidics and Nanofluidics","volume":"29 8","pages":"53"},"PeriodicalIF":2.3000,"publicationDate":"2025-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241239/pdf/","citationCount":"0","resultStr":"{\"title\":\"Using dimensionless numbers to understand interfacial mass transfer for parallel flow in a microchannel.\",\"authors\":\"Anand Sudha, Martin Rohde\",\"doi\":\"10.1007/s10404-025-02828-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Liquid-liquid Extraction has emerged as a major technique for radioisotope extraction in recent years. This technique is particularly advantageous in the microscale as the surface-volume ratio is much larger. Since some of these radioisotopes have short half-lives, parallel flow in the microscale is used to extract them as it eliminates the need for separating the two fluids. Though such a configuration has been experimentally studied, dimensionless numbers have not been employed to understand the mass transfer mechanisms. This study uses three dimensionless numbers-the Biot, Peclet and Damkohler numbers-to delve deeper into mass transfer with a chemical reaction at the interface. Mass transfer simulations are performed using a Finite Difference model to solve the 2D Convection-Diffusion Equation with a first-order reaction at the interface, and these numbers are varied. The Damkohler number was observed to have the maximal impact on the extraction efficiency, and this was confirmed to be the case when the extraction efficiency didn't change much as long as the Damkohler number was kept constant. In general, a higher Damkohler number results in a higher extraction efficiency and a correlation was proposed to quantify this influence.</p>\",\"PeriodicalId\":706,\"journal\":{\"name\":\"Microfluidics and Nanofluidics\",\"volume\":\"29 8\",\"pages\":\"53\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2025-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12241239/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microfluidics and Nanofluidics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10404-025-02828-1\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/7/9 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q2\",\"JCRName\":\"INSTRUMENTS & INSTRUMENTATION\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microfluidics and Nanofluidics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10404-025-02828-1","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/7/9 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"INSTRUMENTS & INSTRUMENTATION","Score":null,"Total":0}
引用次数: 0

摘要

液-液萃取法是近年来发展起来的一种重要的放射性同位素萃取技术。这种技术在微尺度下尤其有利,因为表面体积比要大得多。由于其中一些放射性同位素的半衰期很短,因此在微尺度上使用平行流来提取它们,因为它不需要分离两种流体。虽然这种结构已经被实验研究过,但没有使用无因次数来理解传质机制。这项研究使用三维数字——Biot, Peclet和Damkohler数——来深入研究界面上化学反应的传质。采用有限差分模型对界面处有一级反应的二维对流扩散方程进行了传质模拟,得到了不同的传质数值。观察到Damkohler数对提取效率的影响最大,并且在保持Damkohler数不变的情况下,提取效率变化不大。一般来说,更高的Damkohler数导致更高的提取效率,并提出了一个相关性来量化这种影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Using dimensionless numbers to understand interfacial mass transfer for parallel flow in a microchannel.

Liquid-liquid Extraction has emerged as a major technique for radioisotope extraction in recent years. This technique is particularly advantageous in the microscale as the surface-volume ratio is much larger. Since some of these radioisotopes have short half-lives, parallel flow in the microscale is used to extract them as it eliminates the need for separating the two fluids. Though such a configuration has been experimentally studied, dimensionless numbers have not been employed to understand the mass transfer mechanisms. This study uses three dimensionless numbers-the Biot, Peclet and Damkohler numbers-to delve deeper into mass transfer with a chemical reaction at the interface. Mass transfer simulations are performed using a Finite Difference model to solve the 2D Convection-Diffusion Equation with a first-order reaction at the interface, and these numbers are varied. The Damkohler number was observed to have the maximal impact on the extraction efficiency, and this was confirmed to be the case when the extraction efficiency didn't change much as long as the Damkohler number was kept constant. In general, a higher Damkohler number results in a higher extraction efficiency and a correlation was proposed to quantify this influence.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Microfluidics and Nanofluidics
Microfluidics and Nanofluidics 工程技术-纳米科技
CiteScore
4.80
自引率
3.60%
发文量
97
审稿时长
2 months
期刊介绍: Microfluidics and Nanofluidics is an international peer-reviewed journal that aims to publish papers in all aspects of microfluidics, nanofluidics and lab-on-a-chip science and technology. The objectives of the journal are to (1) provide an overview of the current state of the research and development in microfluidics, nanofluidics and lab-on-a-chip devices, (2) improve the fundamental understanding of microfluidic and nanofluidic phenomena, and (3) discuss applications of microfluidics, nanofluidics and lab-on-a-chip devices. Topics covered in this journal include: 1.000 Fundamental principles of micro- and nanoscale phenomena like, flow, mass transport and reactions 3.000 Theoretical models and numerical simulation with experimental and/or analytical proof 4.000 Novel measurement & characterization technologies 5.000 Devices (actuators and sensors) 6.000 New unit-operations for dedicated microfluidic platforms 7.000 Lab-on-a-Chip applications 8.000 Microfabrication technologies and materials Please note, Microfluidics and Nanofluidics does not publish manuscripts studying pure microscale heat transfer since there are many journals that cover this field of research (Journal of Heat Transfer, Journal of Heat and Mass Transfer, Journal of Heat and Fluid Flow, etc.).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信