整合多祖先基因组和蛋白质组学数据,识别乳腺癌遗传风险位点的血液风险生物标志物和靶蛋白。

IF 4.7 2区 医学 Q1 ONCOLOGY
Guochong Jia, Jie Ping, Ran Tao, Jirong Long, Lili Liu, Shuai Xu, Heather M. Munro, Stefan Ambs, Mollie E. Barnard, Yu Chen, Ji-Yeob Choi, Yu-Tang Gao, Montserrat Garcia-Closas, Jian Gu, Jennifer J. Hu, Motoki Iwasaki, Esther M. John, Sun-Seog Kweon, Koichi Matsuda, Keitaro Matsuo, Katherine Nathanson, Barbara Nemesure, Olufunmilayo I. Olopade, Tuya Pal, Sue K. Park, Boyoung Park, Michael F. Press, Maureen Sanderson, Dale P. Sandler, Song Yao, Ying Zheng, Prisca O. Adejumo, Thomas Ahearn, Abenaa M. Brewster, Anselm J. M. Hennis, Hidemi Ito, Michiaki Kubo, Eun-Sook Lee, Siew-Kee Low, Timothy Makumbi, Paul Ndom, Dong-Young Noh, Katie M. O'Brien, Andrew F. Olshan, Mojisola M. Oluwasanu, Min-Ho Park, Sonya Reid, Taiki Yamaji, Gary Zirpoli, Ebonee N. Butler, Maosheng Huang, Atara Ntekim, Clarice R. Weinberg, Bingshan Li, Dezheng Huo, Daehee Kang, Christine Ambrosone, Melissa A. Troester, Christopher A. Haiman, Xiao-Ou Shu, Julie R. Palmer, Xingyi Guo, Wei Zheng
{"title":"整合多祖先基因组和蛋白质组学数据,识别乳腺癌遗传风险位点的血液风险生物标志物和靶蛋白。","authors":"Guochong Jia,&nbsp;Jie Ping,&nbsp;Ran Tao,&nbsp;Jirong Long,&nbsp;Lili Liu,&nbsp;Shuai Xu,&nbsp;Heather M. Munro,&nbsp;Stefan Ambs,&nbsp;Mollie E. Barnard,&nbsp;Yu Chen,&nbsp;Ji-Yeob Choi,&nbsp;Yu-Tang Gao,&nbsp;Montserrat Garcia-Closas,&nbsp;Jian Gu,&nbsp;Jennifer J. Hu,&nbsp;Motoki Iwasaki,&nbsp;Esther M. John,&nbsp;Sun-Seog Kweon,&nbsp;Koichi Matsuda,&nbsp;Keitaro Matsuo,&nbsp;Katherine Nathanson,&nbsp;Barbara Nemesure,&nbsp;Olufunmilayo I. Olopade,&nbsp;Tuya Pal,&nbsp;Sue K. Park,&nbsp;Boyoung Park,&nbsp;Michael F. Press,&nbsp;Maureen Sanderson,&nbsp;Dale P. Sandler,&nbsp;Song Yao,&nbsp;Ying Zheng,&nbsp;Prisca O. Adejumo,&nbsp;Thomas Ahearn,&nbsp;Abenaa M. Brewster,&nbsp;Anselm J. M. Hennis,&nbsp;Hidemi Ito,&nbsp;Michiaki Kubo,&nbsp;Eun-Sook Lee,&nbsp;Siew-Kee Low,&nbsp;Timothy Makumbi,&nbsp;Paul Ndom,&nbsp;Dong-Young Noh,&nbsp;Katie M. O'Brien,&nbsp;Andrew F. Olshan,&nbsp;Mojisola M. Oluwasanu,&nbsp;Min-Ho Park,&nbsp;Sonya Reid,&nbsp;Taiki Yamaji,&nbsp;Gary Zirpoli,&nbsp;Ebonee N. Butler,&nbsp;Maosheng Huang,&nbsp;Atara Ntekim,&nbsp;Clarice R. Weinberg,&nbsp;Bingshan Li,&nbsp;Dezheng Huo,&nbsp;Daehee Kang,&nbsp;Christine Ambrosone,&nbsp;Melissa A. Troester,&nbsp;Christopher A. Haiman,&nbsp;Xiao-Ou Shu,&nbsp;Julie R. Palmer,&nbsp;Xingyi Guo,&nbsp;Wei Zheng","doi":"10.1002/ijc.70041","DOIUrl":null,"url":null,"abstract":"<p>Genome-wide association studies (GWAS) have identified more than 200 risk loci for breast cancer. However, target genes and their encoded proteins in these loci remain largely unknown. In this study, we utilized genetic prediction models for 1349 circulating proteins derived from individuals of African (<i>n</i> = 1871) and European (<i>n</i> = 7213) ancestry to investigate genetically predicted protein levels in association with breast cancer risk among females of African (<i>n</i> = 40,138), Asian (<i>n</i> = 137,677), and European (<i>n</i> = 247,173) ancestry. We identified 51 blood protein biomarkers associated with breast cancer risk, overall or by subtypes, at a false discovery rate (FDR) &lt; 0.05, including 27 proteins encoded by genes located at least 1 Mb away from any of the known risk loci identified in GWAS. Of them, 32 proteins showed significant associations with breast cancer risk at the Bonferroni-corrected significance level (<i>p</i> &lt; 2.45 × 10<sup>−4</sup>). Of the 24 proteins located at GWAS-identified risk loci, associations for 14 proteins were significantly attenuated after adjustment for the index risk variant of each respective locus, suggesting that these proteins may be target proteins for the risk loci. Encoding gene expression levels in normal breast tissue could be genetically predicted for 23 of the 51 identified proteins, and 13 encoding genes were associated with breast cancer risk in the same direction (<i>p</i> &lt; .05). Our study identified potential protein targets of GWAS risk loci and biomarkers for breast cancer risk and provided additional insights into breast cancer genetics and etiology.</p>","PeriodicalId":180,"journal":{"name":"International Journal of Cancer","volume":"157 10","pages":"2071-2080"},"PeriodicalIF":4.7000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integrating multi-ancestry genomic and proteomic data to identify blood risk biomarkers and target proteins for breast cancer genetic risk loci\",\"authors\":\"Guochong Jia,&nbsp;Jie Ping,&nbsp;Ran Tao,&nbsp;Jirong Long,&nbsp;Lili Liu,&nbsp;Shuai Xu,&nbsp;Heather M. Munro,&nbsp;Stefan Ambs,&nbsp;Mollie E. Barnard,&nbsp;Yu Chen,&nbsp;Ji-Yeob Choi,&nbsp;Yu-Tang Gao,&nbsp;Montserrat Garcia-Closas,&nbsp;Jian Gu,&nbsp;Jennifer J. Hu,&nbsp;Motoki Iwasaki,&nbsp;Esther M. John,&nbsp;Sun-Seog Kweon,&nbsp;Koichi Matsuda,&nbsp;Keitaro Matsuo,&nbsp;Katherine Nathanson,&nbsp;Barbara Nemesure,&nbsp;Olufunmilayo I. Olopade,&nbsp;Tuya Pal,&nbsp;Sue K. Park,&nbsp;Boyoung Park,&nbsp;Michael F. Press,&nbsp;Maureen Sanderson,&nbsp;Dale P. Sandler,&nbsp;Song Yao,&nbsp;Ying Zheng,&nbsp;Prisca O. Adejumo,&nbsp;Thomas Ahearn,&nbsp;Abenaa M. Brewster,&nbsp;Anselm J. M. Hennis,&nbsp;Hidemi Ito,&nbsp;Michiaki Kubo,&nbsp;Eun-Sook Lee,&nbsp;Siew-Kee Low,&nbsp;Timothy Makumbi,&nbsp;Paul Ndom,&nbsp;Dong-Young Noh,&nbsp;Katie M. O'Brien,&nbsp;Andrew F. Olshan,&nbsp;Mojisola M. Oluwasanu,&nbsp;Min-Ho Park,&nbsp;Sonya Reid,&nbsp;Taiki Yamaji,&nbsp;Gary Zirpoli,&nbsp;Ebonee N. Butler,&nbsp;Maosheng Huang,&nbsp;Atara Ntekim,&nbsp;Clarice R. Weinberg,&nbsp;Bingshan Li,&nbsp;Dezheng Huo,&nbsp;Daehee Kang,&nbsp;Christine Ambrosone,&nbsp;Melissa A. Troester,&nbsp;Christopher A. Haiman,&nbsp;Xiao-Ou Shu,&nbsp;Julie R. Palmer,&nbsp;Xingyi Guo,&nbsp;Wei Zheng\",\"doi\":\"10.1002/ijc.70041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Genome-wide association studies (GWAS) have identified more than 200 risk loci for breast cancer. However, target genes and their encoded proteins in these loci remain largely unknown. In this study, we utilized genetic prediction models for 1349 circulating proteins derived from individuals of African (<i>n</i> = 1871) and European (<i>n</i> = 7213) ancestry to investigate genetically predicted protein levels in association with breast cancer risk among females of African (<i>n</i> = 40,138), Asian (<i>n</i> = 137,677), and European (<i>n</i> = 247,173) ancestry. We identified 51 blood protein biomarkers associated with breast cancer risk, overall or by subtypes, at a false discovery rate (FDR) &lt; 0.05, including 27 proteins encoded by genes located at least 1 Mb away from any of the known risk loci identified in GWAS. Of them, 32 proteins showed significant associations with breast cancer risk at the Bonferroni-corrected significance level (<i>p</i> &lt; 2.45 × 10<sup>−4</sup>). Of the 24 proteins located at GWAS-identified risk loci, associations for 14 proteins were significantly attenuated after adjustment for the index risk variant of each respective locus, suggesting that these proteins may be target proteins for the risk loci. Encoding gene expression levels in normal breast tissue could be genetically predicted for 23 of the 51 identified proteins, and 13 encoding genes were associated with breast cancer risk in the same direction (<i>p</i> &lt; .05). Our study identified potential protein targets of GWAS risk loci and biomarkers for breast cancer risk and provided additional insights into breast cancer genetics and etiology.</p>\",\"PeriodicalId\":180,\"journal\":{\"name\":\"International Journal of Cancer\",\"volume\":\"157 10\",\"pages\":\"2071-2080\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Cancer\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/ijc.70041\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Cancer","FirstCategoryId":"3","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/ijc.70041","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

全基因组关联研究(GWAS)已经确定了200多个乳腺癌风险位点。然而,这些基因座中的靶基因及其编码蛋白在很大程度上仍然未知。在这项研究中,我们利用来自非洲(n = 1871)和欧洲(n = 7213)血统的1349种循环蛋白的遗传预测模型,研究了非洲(n = 40138)、亚洲(n = 137677)和欧洲(n = 247173)血统女性中与乳腺癌风险相关的遗传预测蛋白水平。我们以错误发现率(FDR)确定了51种与乳腺癌风险相关的血液蛋白生物标志物(总体或亚型)-4)。在gwas鉴定的风险位点上的24个蛋白中,对每个位点的指数风险变异进行调整后,14个蛋白的相关性显著减弱,这表明这些蛋白可能是风险位点的靶蛋白。编码基因在正常乳腺组织中的表达水平在51个已确定的蛋白质中有23个可以遗传预测,13个编码基因在同一方向上与乳腺癌风险相关
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Integrating multi-ancestry genomic and proteomic data to identify blood risk biomarkers and target proteins for breast cancer genetic risk loci

Integrating multi-ancestry genomic and proteomic data to identify blood risk biomarkers and target proteins for breast cancer genetic risk loci

Genome-wide association studies (GWAS) have identified more than 200 risk loci for breast cancer. However, target genes and their encoded proteins in these loci remain largely unknown. In this study, we utilized genetic prediction models for 1349 circulating proteins derived from individuals of African (n = 1871) and European (n = 7213) ancestry to investigate genetically predicted protein levels in association with breast cancer risk among females of African (n = 40,138), Asian (n = 137,677), and European (n = 247,173) ancestry. We identified 51 blood protein biomarkers associated with breast cancer risk, overall or by subtypes, at a false discovery rate (FDR) < 0.05, including 27 proteins encoded by genes located at least 1 Mb away from any of the known risk loci identified in GWAS. Of them, 32 proteins showed significant associations with breast cancer risk at the Bonferroni-corrected significance level (p < 2.45 × 10−4). Of the 24 proteins located at GWAS-identified risk loci, associations for 14 proteins were significantly attenuated after adjustment for the index risk variant of each respective locus, suggesting that these proteins may be target proteins for the risk loci. Encoding gene expression levels in normal breast tissue could be genetically predicted for 23 of the 51 identified proteins, and 13 encoding genes were associated with breast cancer risk in the same direction (p < .05). Our study identified potential protein targets of GWAS risk loci and biomarkers for breast cancer risk and provided additional insights into breast cancer genetics and etiology.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
13.40
自引率
3.10%
发文量
460
审稿时长
2 months
期刊介绍: The International Journal of Cancer (IJC) is the official journal of the Union for International Cancer Control—UICC; it appears twice a month. IJC invites submission of manuscripts under a broad scope of topics relevant to experimental and clinical cancer research and publishes original Research Articles and Short Reports under the following categories: -Cancer Epidemiology- Cancer Genetics and Epigenetics- Infectious Causes of Cancer- Innovative Tools and Methods- Molecular Cancer Biology- Tumor Immunology and Microenvironment- Tumor Markers and Signatures- Cancer Therapy and Prevention
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信