氯离子捕获La0.7Sr0.3BO3 (B = Fe, Co)钙钛矿氧化物实现优异的电化学脱盐性能。

IF 10.7 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Fanyue Meng, Hao Wang, Xiaoyang Xuan, Yong Liu, Yuquan Li, Xingtao Xu and Likun Pan
{"title":"氯离子捕获La0.7Sr0.3BO3 (B = Fe, Co)钙钛矿氧化物实现优异的电化学脱盐性能。","authors":"Fanyue Meng, Hao Wang, Xiaoyang Xuan, Yong Liu, Yuquan Li, Xingtao Xu and Likun Pan","doi":"10.1039/D5MH00603A","DOIUrl":null,"url":null,"abstract":"<p >Perovskite oxides (ABO<small><sub>3</sub></small>), with a designable crystal structure, excellent conductivity and inherent oxygen vacancies, hold great promise in addressing the sluggish kinetics and poor stability of conventional Cl<small><sup>−</sup></small> capturing electrodes used in capacitive deionization (CDI) for saline water desalination. However, Cl<small><sup>−</sup></small> storage in perovskite oxides remains largely unexplored in the CDI field. This work unprecedentedly demonstrates that Cl<small><sup>−</sup></small> intercalation can be realized for perovskite oxides. The cell parameters and formation energies of a series of ABO<small><sub>3</sub></small> perovskite oxides were precisely predicted using machine learning (ML), while promising candidates (<em>i.e.</em>, LaFeO<small><sub>3</sub></small> and LaCoO<small><sub>3</sub></small>) for CDI were screened from unknown perovskite oxides. With partial substitution of Sr<small><sup>2+</sup></small> at the A-site of LaFeO<small><sub>3</sub></small>, the La<small><sub>0.7</sub></small>Sr<small><sub>0.3</sub></small>FeO<small><sub>3</sub></small> anode displays an excellent desalination rate (6.26 mg g min<small><sup>−1</sup></small>) and superior stability (80% retention after 100-cycle desalination), comparable to state-of-the-art Cl<small><sup>−</sup></small> capturing electrodes. The superior desalination performance is attributed to the reversible redox activity of the Fe ions and the abundant oxygen vacancies. The underlying mechanism was revealed through various quasi-<em>in situ</em> characterization studies and density functional theory calculations. This work pioneers the application of perovskite oxides in CDI and realizes the accelerated discovery of high-performance perovskite oxides for desalination <em>via</em> an ML approach.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 19","pages":" 8181-8193"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chloride ion-capturing La0.7Sr0.3BO3 (B = Fe, Co) perovskite oxides achieving superior electrochemical desalination performance†\",\"authors\":\"Fanyue Meng, Hao Wang, Xiaoyang Xuan, Yong Liu, Yuquan Li, Xingtao Xu and Likun Pan\",\"doi\":\"10.1039/D5MH00603A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Perovskite oxides (ABO<small><sub>3</sub></small>), with a designable crystal structure, excellent conductivity and inherent oxygen vacancies, hold great promise in addressing the sluggish kinetics and poor stability of conventional Cl<small><sup>−</sup></small> capturing electrodes used in capacitive deionization (CDI) for saline water desalination. However, Cl<small><sup>−</sup></small> storage in perovskite oxides remains largely unexplored in the CDI field. This work unprecedentedly demonstrates that Cl<small><sup>−</sup></small> intercalation can be realized for perovskite oxides. The cell parameters and formation energies of a series of ABO<small><sub>3</sub></small> perovskite oxides were precisely predicted using machine learning (ML), while promising candidates (<em>i.e.</em>, LaFeO<small><sub>3</sub></small> and LaCoO<small><sub>3</sub></small>) for CDI were screened from unknown perovskite oxides. With partial substitution of Sr<small><sup>2+</sup></small> at the A-site of LaFeO<small><sub>3</sub></small>, the La<small><sub>0.7</sub></small>Sr<small><sub>0.3</sub></small>FeO<small><sub>3</sub></small> anode displays an excellent desalination rate (6.26 mg g min<small><sup>−1</sup></small>) and superior stability (80% retention after 100-cycle desalination), comparable to state-of-the-art Cl<small><sup>−</sup></small> capturing electrodes. The superior desalination performance is attributed to the reversible redox activity of the Fe ions and the abundant oxygen vacancies. The underlying mechanism was revealed through various quasi-<em>in situ</em> characterization studies and density functional theory calculations. This work pioneers the application of perovskite oxides in CDI and realizes the accelerated discovery of high-performance perovskite oxides for desalination <em>via</em> an ML approach.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 19\",\"pages\":\" 8181-8193\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d5mh00603a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d5mh00603a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

钙钛矿氧化物(ABO3)具有可设计的晶体结构,优异的导电性和固有的氧空位,在解决用于咸水淡化的电容去离子(CDI)的传统Cl捕获电极的动力学迟钝和稳定性差的问题方面具有很大的希望。然而,钙钛矿氧化物中的Cl-存储在CDI领域仍未被广泛探索。这项工作前所未有地证明了钙钛矿氧化物可以实现Cl-插层。利用机器学习技术精确预测了一系列ABO3钙钛矿氧化物的电池参数和形成能,同时从未知的钙钛矿氧化物中筛选出了CDI的有希望的候选材料(即LaFeO3和LaCoO3)。在LaFeO3的a位部分取代Sr2+后,La0.7Sr0.3FeO3阳极显示出优异的脱盐率(6.26 mg g min-1)和优异的稳定性(100次脱盐后保留80%),与最先进的Cl-捕获电极相当。优异的脱盐性能归功于铁离子的可逆氧化还原活性和丰富的氧空位。通过各种准原位表征研究和密度泛函理论计算揭示了潜在的机制。这项工作开创了钙钛矿氧化物在CDI中的应用,并实现了通过ML方法加速发现用于海水淡化的高性能钙钛矿氧化物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Chloride ion-capturing La0.7Sr0.3BO3 (B = Fe, Co) perovskite oxides achieving superior electrochemical desalination performance†

Chloride ion-capturing La0.7Sr0.3BO3 (B = Fe, Co) perovskite oxides achieving superior electrochemical desalination performance†

Perovskite oxides (ABO3), with a designable crystal structure, excellent conductivity and inherent oxygen vacancies, hold great promise in addressing the sluggish kinetics and poor stability of conventional Cl capturing electrodes used in capacitive deionization (CDI) for saline water desalination. However, Cl storage in perovskite oxides remains largely unexplored in the CDI field. This work unprecedentedly demonstrates that Cl intercalation can be realized for perovskite oxides. The cell parameters and formation energies of a series of ABO3 perovskite oxides were precisely predicted using machine learning (ML), while promising candidates (i.e., LaFeO3 and LaCoO3) for CDI were screened from unknown perovskite oxides. With partial substitution of Sr2+ at the A-site of LaFeO3, the La0.7Sr0.3FeO3 anode displays an excellent desalination rate (6.26 mg g min−1) and superior stability (80% retention after 100-cycle desalination), comparable to state-of-the-art Cl capturing electrodes. The superior desalination performance is attributed to the reversible redox activity of the Fe ions and the abundant oxygen vacancies. The underlying mechanism was revealed through various quasi-in situ characterization studies and density functional theory calculations. This work pioneers the application of perovskite oxides in CDI and realizes the accelerated discovery of high-performance perovskite oxides for desalination via an ML approach.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Materials Horizons
Materials Horizons CHEMISTRY, MULTIDISCIPLINARY-MATERIALS SCIENCE, MULTIDISCIPLINARY
CiteScore
18.90
自引率
2.30%
发文量
306
审稿时长
1.3 months
期刊介绍: Materials Horizons is a leading journal in materials science that focuses on publishing exceptionally high-quality and innovative research. The journal prioritizes original research that introduces new concepts or ways of thinking, rather than solely reporting technological advancements. However, groundbreaking articles featuring record-breaking material performance may also be published. To be considered for publication, the work must be of significant interest to our community-spanning readership. Starting from 2021, all articles published in Materials Horizons will be indexed in MEDLINE©. The journal publishes various types of articles, including Communications, Reviews, Opinion pieces, Focus articles, and Comments. It serves as a core journal for researchers from academia, government, and industry across all areas of materials research. Materials Horizons is a Transformative Journal and compliant with Plan S. It has an impact factor of 13.3 and is indexed in MEDLINE.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信