Fanyue Meng, Hao Wang, Xiaoyang Xuan, Yong Liu, Yuquan Li, Xingtao Xu and Likun Pan
{"title":"氯离子捕获La0.7Sr0.3BO3 (B = Fe, Co)钙钛矿氧化物实现优异的电化学脱盐性能。","authors":"Fanyue Meng, Hao Wang, Xiaoyang Xuan, Yong Liu, Yuquan Li, Xingtao Xu and Likun Pan","doi":"10.1039/D5MH00603A","DOIUrl":null,"url":null,"abstract":"<p >Perovskite oxides (ABO<small><sub>3</sub></small>), with a designable crystal structure, excellent conductivity and inherent oxygen vacancies, hold great promise in addressing the sluggish kinetics and poor stability of conventional Cl<small><sup>−</sup></small> capturing electrodes used in capacitive deionization (CDI) for saline water desalination. However, Cl<small><sup>−</sup></small> storage in perovskite oxides remains largely unexplored in the CDI field. This work unprecedentedly demonstrates that Cl<small><sup>−</sup></small> intercalation can be realized for perovskite oxides. The cell parameters and formation energies of a series of ABO<small><sub>3</sub></small> perovskite oxides were precisely predicted using machine learning (ML), while promising candidates (<em>i.e.</em>, LaFeO<small><sub>3</sub></small> and LaCoO<small><sub>3</sub></small>) for CDI were screened from unknown perovskite oxides. With partial substitution of Sr<small><sup>2+</sup></small> at the A-site of LaFeO<small><sub>3</sub></small>, the La<small><sub>0.7</sub></small>Sr<small><sub>0.3</sub></small>FeO<small><sub>3</sub></small> anode displays an excellent desalination rate (6.26 mg g min<small><sup>−1</sup></small>) and superior stability (80% retention after 100-cycle desalination), comparable to state-of-the-art Cl<small><sup>−</sup></small> capturing electrodes. The superior desalination performance is attributed to the reversible redox activity of the Fe ions and the abundant oxygen vacancies. The underlying mechanism was revealed through various quasi-<em>in situ</em> characterization studies and density functional theory calculations. This work pioneers the application of perovskite oxides in CDI and realizes the accelerated discovery of high-performance perovskite oxides for desalination <em>via</em> an ML approach.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" 19","pages":" 8181-8193"},"PeriodicalIF":10.7000,"publicationDate":"2025-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Chloride ion-capturing La0.7Sr0.3BO3 (B = Fe, Co) perovskite oxides achieving superior electrochemical desalination performance†\",\"authors\":\"Fanyue Meng, Hao Wang, Xiaoyang Xuan, Yong Liu, Yuquan Li, Xingtao Xu and Likun Pan\",\"doi\":\"10.1039/D5MH00603A\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Perovskite oxides (ABO<small><sub>3</sub></small>), with a designable crystal structure, excellent conductivity and inherent oxygen vacancies, hold great promise in addressing the sluggish kinetics and poor stability of conventional Cl<small><sup>−</sup></small> capturing electrodes used in capacitive deionization (CDI) for saline water desalination. However, Cl<small><sup>−</sup></small> storage in perovskite oxides remains largely unexplored in the CDI field. This work unprecedentedly demonstrates that Cl<small><sup>−</sup></small> intercalation can be realized for perovskite oxides. The cell parameters and formation energies of a series of ABO<small><sub>3</sub></small> perovskite oxides were precisely predicted using machine learning (ML), while promising candidates (<em>i.e.</em>, LaFeO<small><sub>3</sub></small> and LaCoO<small><sub>3</sub></small>) for CDI were screened from unknown perovskite oxides. With partial substitution of Sr<small><sup>2+</sup></small> at the A-site of LaFeO<small><sub>3</sub></small>, the La<small><sub>0.7</sub></small>Sr<small><sub>0.3</sub></small>FeO<small><sub>3</sub></small> anode displays an excellent desalination rate (6.26 mg g min<small><sup>−1</sup></small>) and superior stability (80% retention after 100-cycle desalination), comparable to state-of-the-art Cl<small><sup>−</sup></small> capturing electrodes. The superior desalination performance is attributed to the reversible redox activity of the Fe ions and the abundant oxygen vacancies. The underlying mechanism was revealed through various quasi-<em>in situ</em> characterization studies and density functional theory calculations. This work pioneers the application of perovskite oxides in CDI and realizes the accelerated discovery of high-performance perovskite oxides for desalination <em>via</em> an ML approach.</p>\",\"PeriodicalId\":87,\"journal\":{\"name\":\"Materials Horizons\",\"volume\":\" 19\",\"pages\":\" 8181-8193\"},\"PeriodicalIF\":10.7000,\"publicationDate\":\"2025-07-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Horizons\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d5mh00603a\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/mh/d5mh00603a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
钙钛矿氧化物(ABO3)具有可设计的晶体结构,优异的导电性和固有的氧空位,在解决用于咸水淡化的电容去离子(CDI)的传统Cl捕获电极的动力学迟钝和稳定性差的问题方面具有很大的希望。然而,钙钛矿氧化物中的Cl-存储在CDI领域仍未被广泛探索。这项工作前所未有地证明了钙钛矿氧化物可以实现Cl-插层。利用机器学习技术精确预测了一系列ABO3钙钛矿氧化物的电池参数和形成能,同时从未知的钙钛矿氧化物中筛选出了CDI的有希望的候选材料(即LaFeO3和LaCoO3)。在LaFeO3的a位部分取代Sr2+后,La0.7Sr0.3FeO3阳极显示出优异的脱盐率(6.26 mg g min-1)和优异的稳定性(100次脱盐后保留80%),与最先进的Cl-捕获电极相当。优异的脱盐性能归功于铁离子的可逆氧化还原活性和丰富的氧空位。通过各种准原位表征研究和密度泛函理论计算揭示了潜在的机制。这项工作开创了钙钛矿氧化物在CDI中的应用,并实现了通过ML方法加速发现用于海水淡化的高性能钙钛矿氧化物。
Perovskite oxides (ABO3), with a designable crystal structure, excellent conductivity and inherent oxygen vacancies, hold great promise in addressing the sluggish kinetics and poor stability of conventional Cl− capturing electrodes used in capacitive deionization (CDI) for saline water desalination. However, Cl− storage in perovskite oxides remains largely unexplored in the CDI field. This work unprecedentedly demonstrates that Cl− intercalation can be realized for perovskite oxides. The cell parameters and formation energies of a series of ABO3 perovskite oxides were precisely predicted using machine learning (ML), while promising candidates (i.e., LaFeO3 and LaCoO3) for CDI were screened from unknown perovskite oxides. With partial substitution of Sr2+ at the A-site of LaFeO3, the La0.7Sr0.3FeO3 anode displays an excellent desalination rate (6.26 mg g min−1) and superior stability (80% retention after 100-cycle desalination), comparable to state-of-the-art Cl− capturing electrodes. The superior desalination performance is attributed to the reversible redox activity of the Fe ions and the abundant oxygen vacancies. The underlying mechanism was revealed through various quasi-in situ characterization studies and density functional theory calculations. This work pioneers the application of perovskite oxides in CDI and realizes the accelerated discovery of high-performance perovskite oxides for desalination via an ML approach.