zacrotools:一个Python库,用于动态蒙特卡罗模拟的自动准备,分析和可视化。

IF 2.8 2区 化学 Q3 CHEMISTRY, PHYSICAL
Hector Prats*, 
{"title":"zacrotools:一个Python库,用于动态蒙特卡罗模拟的自动准备,分析和可视化。","authors":"Hector Prats*,&nbsp;","doi":"10.1021/acs.jpca.5c02802","DOIUrl":null,"url":null,"abstract":"<p >This paper presents ZacrosTools, a free and open-source Python library designed to simplify and automate the preparation and analysis of kinetic Monte Carlo (KMC) simulations with the widely used Zacros package. ZacrosTools provides a user-friendly and robust interface for building KMC models, automating the generation of Zacros input files, extracting and processing simulation data, and visualizing results through multiple plotting functionalities. The library benefits new users by simplifying model preparation and helping them avoid common mistakes while also being suitable to advanced users who wish to fine-tune complex KMC models and conduct comprehensive analyses. ZacrosTools is extensively documented with numerous examples available on ReadTheDocs and is publicly accessible on GitHub under the MIT license. Furthermore, it integrates continuous integration via GitHub Actions to facilitate seamless contributions from the user community.</p>","PeriodicalId":59,"journal":{"name":"The Journal of Physical Chemistry A","volume":"129 29","pages":"6608–6614"},"PeriodicalIF":2.8000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302213/pdf/","citationCount":"0","resultStr":"{\"title\":\"ZacrosTools: A Python Library for Automated Preparation, Analysis, and Visualization of Kinetic Monte Carlo Simulations with Zacros\",\"authors\":\"Hector Prats*,&nbsp;\",\"doi\":\"10.1021/acs.jpca.5c02802\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >This paper presents ZacrosTools, a free and open-source Python library designed to simplify and automate the preparation and analysis of kinetic Monte Carlo (KMC) simulations with the widely used Zacros package. ZacrosTools provides a user-friendly and robust interface for building KMC models, automating the generation of Zacros input files, extracting and processing simulation data, and visualizing results through multiple plotting functionalities. The library benefits new users by simplifying model preparation and helping them avoid common mistakes while also being suitable to advanced users who wish to fine-tune complex KMC models and conduct comprehensive analyses. ZacrosTools is extensively documented with numerous examples available on ReadTheDocs and is publicly accessible on GitHub under the MIT license. Furthermore, it integrates continuous integration via GitHub Actions to facilitate seamless contributions from the user community.</p>\",\"PeriodicalId\":59,\"journal\":{\"name\":\"The Journal of Physical Chemistry A\",\"volume\":\"129 29\",\"pages\":\"6608–6614\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-07-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12302213/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Journal of Physical Chemistry A\",\"FirstCategoryId\":\"1\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acs.jpca.5c02802\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Journal of Physical Chemistry A","FirstCategoryId":"1","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acs.jpca.5c02802","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

本文介绍了ZacrosTools,一个免费的开源Python库,旨在使用广泛使用的Zacros包简化和自动化动力学蒙特卡罗(KMC)模拟的准备和分析。ZacrosTools为构建KMC模型、自动生成Zacros输入文件、提取和处理仿真数据以及通过多种绘图功能将结果可视化提供了一个用户友好且强大的界面。该库通过简化模型准备并帮助他们避免常见错误而使新用户受益,同时也适合希望微调复杂KMC模型并进行全面分析的高级用户。ZacrosTools在ReadTheDocs上有大量的示例,并且在MIT许可下可以在GitHub上公开访问。此外,它通过GitHub Actions集成了持续集成,以方便用户社区的无缝贡献。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
ZacrosTools: A Python Library for Automated Preparation, Analysis, and Visualization of Kinetic Monte Carlo Simulations with Zacros

This paper presents ZacrosTools, a free and open-source Python library designed to simplify and automate the preparation and analysis of kinetic Monte Carlo (KMC) simulations with the widely used Zacros package. ZacrosTools provides a user-friendly and robust interface for building KMC models, automating the generation of Zacros input files, extracting and processing simulation data, and visualizing results through multiple plotting functionalities. The library benefits new users by simplifying model preparation and helping them avoid common mistakes while also being suitable to advanced users who wish to fine-tune complex KMC models and conduct comprehensive analyses. ZacrosTools is extensively documented with numerous examples available on ReadTheDocs and is publicly accessible on GitHub under the MIT license. Furthermore, it integrates continuous integration via GitHub Actions to facilitate seamless contributions from the user community.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
The Journal of Physical Chemistry A
The Journal of Physical Chemistry A 化学-物理:原子、分子和化学物理
CiteScore
5.20
自引率
10.30%
发文量
922
审稿时长
1.3 months
期刊介绍: The Journal of Physical Chemistry A is devoted to reporting new and original experimental and theoretical basic research of interest to physical chemists, biophysical chemists, and chemical physicists.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信